Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Environ Manage ; 355: 120402, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38428183

ABSTRACT

Interactions of microplastics (MPs) biofilm with antibiotic resistance genes (ARGs) and antibiotics in aquatic environments have made microplastic biofilm an issue of keen scholarly interest. The process of biofilm formation and the degree of ARGs enrichment in the presence of antibiotic-selective pressure and the impact on the microbial community need to be further investigated. In this paper, the selective pressure of ciprofloxacin (CIP) and illumination conditions were investigated to affect the physicochemical properties, biomass, and extracellular polymer secretion of polyvinyl chloride (PVC) microplastic biofilm. In addition, relative copy numbers of nine ARGs were analyzed by real-time quantitative polymerase chain reaction (qPCR). In the presence of CIP, microorganisms in the water and microplastic biofilm were more inclined to carry associated ARGs (2-3 times higher), which had a contributing effect on ARGs enrichment. The process of pre-microplastic biofilm formation might have an inhibitory effect on ARGs (total relative abundance up to 0.151) transfer and proliferation compared to the surrounding water (total relative abundance up to 0.488). However, in the presence of CIP stress, microplastic biofilm maintained the abundance of ARGs (from 0.151 to 0.149) better compared to the surrounding water (from 0.488 to 0.386). Therefore, microplastic biofilm act as abundance buffer island of ARGs stabilizing the concentration of ARGs. In addition, high-throughput analyses showed the presence of antibiotic-resistant (Pseudomonas) and pathogenic (Vibrio) microorganisms in biofilm under different conditions. The above research deepens our understanding of ARGs enrichment in biofilm and provides important insights into the ecological risks of interactions between ARGs, antibiotics, and microplastic biofilm.


Subject(s)
Microplastics , Plastics , Genes, Bacterial , Rivers , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Ciprofloxacin , Water , Biofilms
2.
Res Vet Sci ; 174: 105304, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759349

ABSTRACT

Periodontosis is the most common clinical disease in adult dogs, which is mainly caused by plaque accumulation and seriously endangers the oral health of dogs and even cause kidney, myocardial, and liver problems in severe cases. The aim of this study was to determine the clinical efficacy of dental chew (Cature Brushing Treats product) with mechanical and chemical properties in beagles. The dogs in the experimental group were fed with a dental chew twice a day after meals; The control group had no treatment. Dental plaque was evaluated on the 14th day and 29th day, respectively. The concentration of volatile sulfur compounds (VSC) in the breath and dental calculus were also evaluated on the 29th day. The results showed that there was no significant difference in the indexes of dental plaque on the 14th day. While they had significantly reduced accumulation of plaque (37.63%), calculus (37.61%), and VSC concentration (81.08%) compared to when receiving no chew on the 29th day.


Subject(s)
Dental Calculus , Dental Plaque , Dog Diseases , Halitosis , Animals , Dogs , Halitosis/veterinary , Halitosis/prevention & control , Dental Plaque/veterinary , Dental Plaque/prevention & control , Dental Calculus/veterinary , Dental Calculus/chemistry , Dental Calculus/prevention & control , Male , Female , Sulfur Compounds/analysis
3.
J Hazard Mater ; 459: 132099, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37517232

ABSTRACT

As two pollutants with similar transport pathways, microplastics (MPs) and antibiotics (ATs) inevitably co-exist in water environments, and their interaction has become a topic of intense research interest for scholars over the past few years. This paper comprehensively and systematically reviews the current interaction between MPs and ATs, in particular, the role played by biofilm developed MPs (microplastic biofilm). A summary of the formation process of microplastic biofilm and its unique microbial community structure is presented in the paper. The formation of microplastic biofilm can enhance the adsorption mechanisms of ATs on primary MPs. Moreover, microplastic biofilm system is a diverse and vast reservoir of genetic material, and this paper reviews the mechanisms by which microplastics with biofilm drive the production of antibiotic resistance genes (ARGs) and the processes that selectively enrich for more ARGs. Meanwhile, the enrichment of ARGs may lead to the development of microbial resistance and the gradual loss of the antimicrobial effect of ATs. The transfer pathways of ARGs affected by microplastic biofilm are outlined, and ARGs dependent transfer of antibiotic resistance bacteria (ARB) is mainly through horizontal gene transfer (HGT). Furthermore, the ecological implications of the interaction between microplastic biofilm and ATs and perspectives for future research are reviewed. This review contributes to a new insight into the aquatic ecological environmental risks and the fate of contaminants (MPs, ATs), and is of great significance for controlling the combined pollution of these two pollutants.


Subject(s)
Environmental Pollutants , Microplastics , Plastics , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Drug Resistance, Microbial/genetics , Biofilms
4.
Bioresour Technol ; 323: 124630, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33418348

ABSTRACT

A novel layered double hydroxide (LDH)-orange peel (OP) biochar/sodium alginate (SA) (LBSA) synthetic material was prepared as an immobilized carrier for Acinetobacter sp. FYF8 to improve the removal of nitrogen and phosphorus in the bioreactor. Results demonstrated that under optimum conditions, the nitrate and phosphate removal efficiency reached 95.32 and 86.11%, respectively. The response surface methodology was used to illustrate the adsorption properties of the material and obtained optimal conditions for the removal of nitrate. The adsorption kinetics and isotherm were well fitted with the pseudo-second-order and Langmuir isotherm model, respectively, indicating that the adsorption process was mainly controlled by chemical adsorption and was favorable. Moreover, the morphology and composition of LBSA immobilized bacteria were analyzed and the mechanism of removing nitrate and phosphate was the synergistic effect of biological metabolism and adsorption. Community structure analysis and microbial distribution showed that FYF8 might was the dominant strain in bioreactors.


Subject(s)
Nitrates , Water Pollutants, Chemical , Adsorption , Alginates , Biocompatible Materials , Bioreactors , Charcoal , Hydroxides , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL