Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Dalton Trans ; 40(36): 9180-8, 2011 Sep 28.
Article in English | MEDLINE | ID: mdl-21829834

ABSTRACT

Here we report a new "green" method to synthesize Zn(1-x)Cd(x)Se (x = 0-1) and stable red-green-blue tricolor Zn(1-x)Cd(x)Se core/shell nanocrystals using only low cost, phosphine-free and environmentally friendly reagents. The first excitonic absorption peak and photoluminescence (PL) position of the Zn(1-x)Cd(x)Se nanocrystals (the value of x is in the range 0.005-0.2) can be fixed to any position in the range 456-540 nm. There is no red or blue shift in the entire reaction process. Three similar sizes of alloyed Zn(1-x)Cd(x)Se nanocrystals with blue, green, and yellow emissions were successfully selected as cores to synthesize high quality blue, green, and red core/shell nanocrystal emitters. For the synthesis of core/shell nanocrystals with a high quantum yield (QY) and stability, the selection of shell materials has been proven to be very important. Therefore, alternative protocols have been used to optimize thick shell growth. ZnSe/ZnSe(x)S(1-x) and CdS/Zn(1-x)Cd(x)S have been found as an excellent middle multishell to overcoat between the alloyed Zn(1-x)Cd(x)Se core and ZnS outshell. The QYs of the as-synthesized core/shell alloyed Zn(1-x)Cd(x)Se nanocrystals can reach 40-75%. The Cd content is reduced to less than 0.1% for Zn(1 -x)Cd(x)Se core/shell nanocrystals with emissions in the range 456-540 nm. More than 15 g of high quality Zn(1-x)Cd(x)Se core/shell nanocrystals were prepared successfully in a large scale, one-pot reaction. Importantly, the emissions of such thick multishell nanocrystals are not susceptible to ligand loss and stability in various physiological conditions.


Subject(s)
Alloys/chemical synthesis , Cadmium/chemistry , Green Chemistry Technology/methods , Nanoparticles/chemistry , Selenium/chemistry , Zinc/chemistry , Green Chemistry Technology/economics , Luminescence , Phosphines
2.
J Colloid Interface Sci ; 344(2): 279-85, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20129617

ABSTRACT

High quality water-soluble semiconductor CdSe quantum dots (QDs) were prepared by a phase transfer method, in which amphiphilic oligomers (polymaleic acid aliphatic alcohol ester) was used as surface coating agents. The as-prepared aqueous QDs were high fluorescent and extremely stable. Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy all indicated that the surfaces of the QDs were coated with amphiphilic oligomers. Alkyl chain length of the amphiphilic oligomers could dramatically affect the phase transfer efficiency. It was found that the use of polymaleic acid n-hexadecanol ester had the best result. A biocompatible test has been carried out and such prepared water-soluble QDs were used to target tumor cells and found that the oligomer-functionalized QDs were excellent fluorescence labels for detecting the human hepatoma cells.


Subject(s)
Cadmium Compounds/chemistry , Esters/chemistry , Fluorescence , Maleic Anhydrides/chemistry , Polymers/chemistry , Quantum Dots , Selenium Compounds/chemistry , Water/chemistry , Cadmium Compounds/chemical synthesis , Humans , Particle Size , Phase Transition , Selenium Compounds/chemical synthesis , Semiconductors , Solubility , Surface Properties , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL