Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Environ Res ; 245: 118024, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38151151

ABSTRACT

River systems are important recipients of environmental plastic pollution and have become key pathways for the transfer of mismanaged waste from the land to the ocean. Understanding the sources and fate of plastic debris, including plastic litter (>5 mm) and microplastics (MPs) (<5 mm), entering different riverine systems is essential to mitigate the ongoing environmental plastic pollution crisis. We comprehensively investigated the plastic pollution in the catchments of two rivers in the Yangtze River basin: an urban river, the Suzhou section of the Beijing-Hangzhou Grand Canal (SZ); and a pristine rural river, the Jingmen section of the Hanjiang River (JM). The abundance of plastic pollutants in SZ was significantly higher than in JM: 0.430 ± 0.450 items/m3 and 0.003 ± 0.003 items/m3 of plastic litter in the water; 23.47 ± 25.53 n/m3 and 2.78 ± 1.55 n/m3 MPs in the water; and 218.82 ± 77.40 items/kg and 5.30 ± 1.99 items/kg of MPs in the sediment, respectively. Plastic litter and MPs were closely correlated in abundance and polymer composition. Overall, the polymer type, shape and color of MPs were dominant by polypropylene (42.5%), fragment (60.4%) and transparent (40.0%), respectively. Source tracing analysis revealed that packaging, shipping, and wastewater were the primary sources of plastic pollutants. The mantel analysis indicated that socio-economic and geospatial factors play crucial roles in driving the hotspot formation of plastic pollution in river networks. The composition of the MP communities differed significantly between the sediments and the overlying water. The urban riverbed sediments had a more pronounced pollutant 'sink' effect compared with the pristine rivers. These findings suggested that the modification of natural streams during urbanization may influence the transport and fate of plastic pollutants in them. Our results offer pivotal insights into effective preventive measures.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Plastics , Rivers , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Microplastics , Water
2.
Environ Sci Technol ; 57(48): 20097-20106, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37955971

ABSTRACT

Plastics are accumulating on Earth, including at sea. The photodegradation of microplastics floating in seawater produces dissolved organic matter (DOM), indicating that sunlight can photodissolve microplastics at the sea surface. To characterize the chemistry of DOM produced as microplastics photodissolve, three microplastics that occur in surface waters, polyethylene (PE), polypropylene (PP), and expanded polystyrene (EPS), were incubated floating on seawater in both the light and the dark. We present the molecular signatures of the DOM produced during these incubations, as determined via ultrahigh-resolution mass spectrometry. Zero to 12 products were identified in the dark, whereas 319-705 photoproducts were identified in the light. Photoproduced DOM included oxygen atoms, indicating that soluble, oxygen-containing organics were formed as plastics photodegrade. PP and PE plastics have hydrogen-to-carbon (H/C) ratios of 2 and generated DOM with average H/C values of 1.7 ± 0.1 to 1.8 ± 0.1, whereas EPS, which has an H/C of 1, generated DOM with an average H/C of 0.9 ± 0.2, indicating the stoichiometry of photoproduced DOM was related to the stoichiometry of the photodegrading polymer. The photodissolution of plastics produced hundreds of photoproducts with varying elemental stoichiometries, indicating that a single abiotic process (photochemistry) can generate hundreds of different chemicals from stoichiometrically monotonous polymers.


Subject(s)
Microplastics , Plastics , Plastics/chemistry , Dissolved Organic Matter , Seawater , Polystyrenes , Polymers , Polypropylenes , Polyethylene , Carbon , Oxygen
3.
Environ Sci Technol ; 56(1): 48-61, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34918509

ABSTRACT

A significant proportion of marine plastic debris and microplastics is assumed to be derived from river systems. In order to effectively manage plastic contamination of the marine environment, an accurate quantification of riverine flux of land-based plastics and microplastics is imperative. Rivers not only represent pathways to the ocean, but are also complex ecosystems that support many life processes and ecosystem services. Yet riverine microplastics research is still in its infancy, and many uncertainties still remain. Major barriers exist in two aspects. First, nonharmonized sampling methodologies make it problematic for compiling data across studies to better estimate riverine fluxes of microplastics globally; Second, the significant spatiotemporal variation of microplastics in rivers which was affected by the river characteristics, MPs properties, etc. also have important influence on the estimation of riverine MPs fluxes. In this study, we made a comprehensive review from the above two aspects based on published peer-reviewed studies and provide recommendations and suggestions for a reliable monitoring strategy of riverine MPs, which is beneficial to the further establish sampling methods for rivers in different geographical locations. Besides, methods for achieving a high level of comparability across studies in different geographical contexts are highlighted. Riverine microplastic flux monitoring is another important part of this manuscript. The influential factors and calculation methods of microplastic flux in rivers are also discussed in this paper.


Subject(s)
Microplastics , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Plastics , Rivers , Water Pollutants, Chemical/analysis
4.
Environ Sci Technol ; 54(20): 12979-12988, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32966052

ABSTRACT

A new technique involving large-volume (10 m3) samples of seawater was used to determine the abundance of microplastics (MPs) in the water column in the West Pacific Ocean and the East Indian Ocean. Compared to the conventional sampling methods based on smaller volumes of water, the new data yielded abundance values for the deep-water column that were at least 1-2 orders of magnitude lower. The data suggested that limited bulk volumes currently used for surface sampling are insufficient to obtain accurate estimates of MP abundance in deep water. Size distribution data indicated that the lateral movement of MPs into the water column contributed to their movement from the surface to the bottom. This study provides a reliable dataset for the water column to enable a better understanding of the transport and fate of plastic contamination in the deep-ocean ecosystem.


Subject(s)
Microplastics , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Indian Ocean , Pacific Ocean , Plastics , Water Pollutants, Chemical/analysis
5.
J Mater Sci Mater Med ; 31(12): 115, 2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33247423

ABSTRACT

Persistent local oxygen delivery is crucial to create a microenvironment for cell survival and nerve regeneration in acute spinal cord injury (SCI). This study aimed to fabricate calcium peroxide-based microspheres incorporated into a 3-D construct scaffold as a novel oxygen release therapy for SCI. The scaffolds were able to generate oxygen over the course of 21 days when incubated under hypoxic conditions. In vitro, GFP-labeled bone marrow-derived mesenchymal stem cells (MSCs) were planted into the scaffolds. We observed that scaffolds could enhance MSC survival under hypoxic conditions for more than 21 days. Oxygen generating scaffolds were transplanted into spinal cord injury sites of rats in vivo. Twelve weeks following transplantation, cavity areas in the injury/graft site were significantly reduced due to tissue regeneration. Additionally, the oxygen generating scaffolds improved revascularization as observed through vWF immunostaining. A striking feature was the occurrence of nerve fiber regeneration in the lesion sites, which eventually led to significant locomotion recovery. The present results indicate that the oxygen generating scaffolds have the property of sustained local oxygen release, thus facilitating regeneration in injured spinal cords.


Subject(s)
Coated Materials, Biocompatible , Guided Tissue Regeneration , Oxygen/pharmacokinetics , Spinal Cord Injuries/rehabilitation , Tissue Scaffolds , Animals , Cell Survival/drug effects , Cells, Cultured , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacokinetics , Coated Materials, Biocompatible/pharmacology , Female , Guided Tissue Regeneration/instrumentation , Guided Tissue Regeneration/methods , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Microspheres , Nerve Regeneration/drug effects , Nerve Regeneration/physiology , Oxygen/metabolism , Oxygen/pharmacology , Peroxides/chemistry , Peroxides/pharmacokinetics , Peroxides/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacokinetics , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Rats , Rats, Sprague-Dawley , Recovery of Function/drug effects , Recovery of Function/physiology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/therapy , Tissue Scaffolds/chemistry
6.
J Mater Sci Mater Med ; 27(5): 89, 2016 May.
Article in English | MEDLINE | ID: mdl-26975746

ABSTRACT

To develop adriamycin (ADM)-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles in a porous nano-hydroxyapatite/collagen scaffold (ADM-PLGA-NHAC). To provide novel strategies for future treatment of osteosarcoma, the properties of the scaffold, including its in vitro extended-release properties, the inhibition effects of ADM-PLGA-NHAC on the osteosarcoma MG63 cells, and its bone repair capacity, were investigated in vivo and in vitro. The PLGA copolymer was utilized as a drug carrier to deliver ADM-PLGA nanoparticles (ADM-PLGA-NP). Porous nano-hydroxyapatite and collagen were used to materials to produce the porous nano-hydroxyapatite/collagen scaffold (NHAC), into which the ADM-PLGA-NP was loaded. The performance of the drug-carrying scaffold was assessed using multiple techniques, including scanning electron microscopy and in vitro extended release. The antineoplastic activities of scaffold extracts on the human osteosarcoma MG63 cell line were evaluated in vitro using the cell counting kit-8 (CCK8) method and live-dead cell staining. The bone repair ability of the scaffold was assessed based on the establishment of a femoral condyle defect model in rabbits. ADM-PLGA-NHAC and NHAC were implanted into the rat muscle bag for immune response experiments. A tumor-bearing nude mice model was created, and the TUNEL and HE staining results were observed under optical microscopy to evaluate the antineoplastic activity and toxic side effects of the scaffold. The composite scaffold demonstrated extraordinary extended-release properties, and its extracts also exhibited significant inhibition of the growth of osteosarcoma MG63 cells. In the bone repair experiment, no significant difference was observed between ADM-PLGA-NHAC and NHAC by itself. In the immune response experiments, ADM-PLGA-NHAC exhibited remarkable biocompatibility. The in vivo antitumor experiment revealed that the implantation of ADM-PLGA-NHAC in the tumor resulted in a improved antineoplastic effect and fewer adverse side effects than direct intraperitoneal injection of ADM. The ADM-PLGA-NHAC developed in this study exhibited excellent extended-release drug properties, bone repairing and antineoplastic efficacy, which make it a promising osteoconductivity material with the capability to inhibit osteosarcoma.


Subject(s)
Bone Neoplasms/drug therapy , Collagen/chemistry , Doxorubicin/chemistry , Durapatite/chemistry , Lactic Acid/chemistry , Polyglycolic Acid/chemistry , Tissue Scaffolds/chemistry , Animals , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Cell Line, Tumor , Doxorubicin/pharmacology , Female , Humans , Lactic Acid/pharmacology , Male , Mice , Mice, Nude , Nanostructures , Osteosarcoma , Polyglycolic Acid/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer , Rabbits , Rats , Rats, Sprague-Dawley
7.
Sci Total Environ ; 902: 166152, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37567296

ABSTRACT

Marine microplastic (MP) pollution represents a global environmental issue that has ignited considerable apprehension within the international community. Seagrass beds, which serve as nearshore marine ecosystems, have emerged as focal points of plastic and MP contamination due to the pronounced density of anthropogenic activities and the hydrological mitigating effects of submerged vegetation. Nevertheless, our comprehension of MPs within seagrass ecosystems remains constrained. In this study, we employed bibliometric analyses and comprehensive data exploration to summarize the historical progression of the development, pivotal areas of interest, and research deficiencies, followed by proposing future research directions for MP pollution in seagrass beds. The 37 selected papers were sourced from the Web of Science Core Collection scientific database as of December 31st, 2022. Based on the current evaluation, MPs are ubiquitously discovered within seagrass canopies, sediments, and marine organisms, while less than 15 % of seagrass species worldwide have been investigated. Moreover, methodological inconsistencies in sampling, processing and visualization between studies hindered the fusion and comparison of data. MPs in upper sediments and seagrass blades were the most widely investigated, with an average abundance of 263.4 ± 309.2 n/kg and 0.09 ± 0.03 n/blade. In all environmental compartments, the prevalent forms of MPs comprise fibrous and fragmented particles, encompassing the dominant polymers such as polypropylene, polyethylene and polyethylene terephthalate. However, the source of MPs in seagrass beds based on MP characteristics and local hydrodynamics has not been comprehensively analyzed in previous studies. The evidence for MPs acting as pollutants and contaminant carries impacting the growth and decline of seagrass is also weak. Currently, the precise implications of MPs on submerged vegetation, organisms, and the broader seagrass ecosystem remain inconclusive. However, considering the persistent accumulation of MPs, it is imperative to explore the ecological hazards they may pose within the foreseeable future.


Subject(s)
Microplastics , Water Pollutants, Chemical , Ecosystem , Plastics , Environmental Monitoring , Water Pollutants, Chemical/analysis
8.
Sci Total Environ ; 869: 161775, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36706998

ABSTRACT

Direct membrane filtration (DMF) technology achieves energy self-sufficiency through carbon recovery and utilization from municipal wastewater. To control its severe membrane fouling and improve DMF technology, targeted research on fouling behaviour and mechanisms is essential. In this study, a DMF reactor equipped with a flat-sheet ceramic membrane was conducted under three scenarios: without control, with intermittent aeration, and with periodic backwash. This system achieved efficient carbon concentration with chemical oxygen demand below 50 mg/L in permeate. Membrane fouling was dominated by intermediate blocking and cake filtration. And reversible external resistance accounted for over 85 % of total resistance. Predominant membrane foulants were free proteins, whose deposition underlies the attachment of cells and biopolymers. Backwash decreased the fouling rate and increased fouling layer porosity by indiscriminately detaching foulants from the membrane surface. While aeration enhanced the back transport of large particles and microbial activity, causing a relatively thin and dense fouling layer containing more microorganisms and ß-d-glucopyranose polysaccharides, which implies a higher biofouling potential during long-term operation. In addition, aeration combined with backwash enhanced fouling control fivefold over either one alone. Therefore, simultaneous operation of backwash and other mechanical methods that can provide shear without stimulating aerobic microbial activity is a preferred strategy for minimizing membrane fouling during DMF of municipal wastewater.


Subject(s)
Biofouling , Water Purification , Wastewater , Membranes, Artificial , Water Purification/methods , Filtration/methods , Bioreactors
9.
Sci Total Environ ; 858(Pt 1): 159769, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36309272

ABSTRACT

Environmental problems caused by microplastics (MPs) are attracting global attention. The ecological risks of bacteria attached to MPs have not been studied in detail under low temperature conditions. Here, MPs in surface water were sampled in winter from the Changjiang (or Yangtze) River Estuary. The physical and chemical characteristics of the MPs were identified, and the diversity and species composition of bacteria on the surface water MPs were analyzed. Phenotypic prediction analysis was used to analyze the potential risk of bacteria in the biofilm on the surfaces of MPs. The main chemical composition in the MPs in the surface water were PP (polypropylene), PE (polyethylene), PS (polystyrene) and other light weight MPs. Sampling sites played a decisive role in the bacterial species composition. The potential plastic-degrading bacterium Acinetobacter and the potential pathogenic bacterium Pseudomonas showed significant differences across different sampling sites. Microbial communities on the surfaces of MPs in winter were not significantly different from planktonic bacteria in the water body. Phenotypic prediction results showed that bacteria on the surface of MPs had a marked capacity to form biofilms, but a low pathogenicity risk. Based on the results of biodiversity analysis and phenotypic prediction, the potential ecological risk of bacteria in biofilms on MP surfaces is lower at low temperatures. In addition, the numerical simulation results show that the possibility of bacteria attached to MPs from the Changjiang River entering the Pacific Ocean in winter is small. MPs attached bacteria in the Changjiang estuary have low ecological risk to the estuary and the Pacific Ocean in winter.


Subject(s)
Microbiota , Water Pollutants, Chemical , Microplastics , Plastics , Water/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Estuaries , Bacteria
10.
J Hazard Mater ; 451: 131125, 2023 06 05.
Article in English | MEDLINE | ID: mdl-36889079

ABSTRACT

Microplastics (MPs) are found in rivers and offshore areas. However, there is a lack of detailed research on the changes of surface microbial species attached to MPs when MPs enter the sea. Moreover, no study has been conducted on changes to plastic-degrading bacteria during this process. In this study, using rivers and offshore in Macau, China as examples, bacterial diversity and bacterial species composition attached to surface water and MPs at four river sampling stations and four offshore sampling stations around Macau were studied. Plastic-degrading bacteria, plastic-related metabolic processes, and plastic-related enzymes were analyzed. The results showed that MPs-attached bacteria in rivers and offshore were different with the planktonic bacteria (PB). The proportion of major families on the surface of MPs continued to increase from rivers to estuaries. MPs could significantly enrich plastic-degrading bacteria both in rivers and offshore. The proportion of plastic-related metabolic pathways on the surface bacteria of MPs in rivers was higher than that in offshore waters. Bacteria on the surface of MPs in rivers may induce higher plastic degradation than offshore. Salinity significantly alters the distribution of plastic-degrading bacteria. MPs may degrade more slowly in the oceans, posing a long-term threat to marine life and human health.


Subject(s)
Plastics , Water Pollutants, Chemical , Humans , Rivers , Salinity , Water Pollutants, Chemical/analysis , Oceans and Seas , Microplastics , Bacteria , Environmental Monitoring/methods
11.
Sci Total Environ ; 905: 166877, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37689211

ABSTRACT

The presence of plastic and microplastic pollution in freshwater systems receives extensive concerns for its accumulative trend and potential ecological impacts. This is the first annual study that investigated the monthly profile of plastic pollution in the mouth of the Soan River. Plastic pollutants comprising microplastic content up to 91.7 % were abundantly found during different seasons around the year, ranging from 132.7 items/m3 to 641.3 items/m3. The average abundance of plastics was significantly higher in August (641.3 ± 23.7 items/m3) than in other months. Overall, fibers, large microplastics (L-MPs), and transparent items were dominant by shape (57.7 %), size (61.9 %), and color (24.6 %), respectively. The highest average number of fibers (374.3/m3) and L-MPs (396 items/m3) were recorded during May and remained higher in the surface water from December to May. Fragments (432.3/m3) and S-MPs were observed higher (362.3 items/m3) during the peak rainy month of the summer monsoon season (August). Variations in the abundance and morphotypes were seemingly not only influenced by the seasonal change but also might be due to hydromorphological characteristics of the river, especially riverbed morphology, and the flow of the water. Only 5.2 % of the total items found were identified using µ-FTIR (micro-Fourier Transformed Infrared Spectroscope) which consisted of 70.7 % plastic items. Spectroscopy revealed that polyethylene terephthalate was an abundantly found polymer that largely prevailed in the form of fibers, followed by polypropylene and polyethylene. Most of the fragments, foams, and films were composed of polypropylene, polystyrene, and rayon respectively. Being an urban river, the polymeric profile demonstrated that anthropogenic activities had a significant impact on polluting the river. These findings are a very important source to understand the profile of plastic pollution in the Soan River and also a significant reference for policy-making in controlling plastic pollution among the riverine networks.

12.
Mar Environ Res ; 188: 106005, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37156673

ABSTRACT

Riverine microplastic (MP) discharge into the ocean contributes greatly to global MP contamination, yet our understanding of this process remains primitive. To deepen our interpretation of the dynamic MP variation throughout the estuarine water columns, we sampled at Xuliujing, the saltwater intrusion node of the Yangtze River Estuary, over the course of ebb and flood tides in four seasons (July and October 2017, January and May 2018 respectively). We observed that the collision of downstream and upstream currents contributed to the high MP concentration and that the mean MP abundance fluctuated with the tide. A model of microplastics residual net flux (MPRF-MODEL), taking the seasonal abundance and vertical distribution of MP along with current velocity into consideration, was developed to predict the net flux of MP throughout the full water columns. 2154 ± 359.7 t/year of MP was estimated to flow into the East China Sea via the River in 2017-2018. Our study suggests that riverine MP flux can be overestimated due to reciprocating current carried MP from the estuary. Using the tidal and seasonal variation in MP distribution, we calculated the tide impact factor index (TIFI) for the Yangtze River Estuary to be between 38.11% and 58.05%. In summary, this study provides a baseline of MP flux research in the Yangtze River for similar tidal-controlled rivers and a contextual understanding of how to appropriately sample and accurately estimate in a dynamic estuary system. The redistribution of microplastics may be impacted by complex tide processes. Although not observed in this study, it may merit investigation.


Subject(s)
Estuaries , Water Pollutants, Chemical , Water , Microplastics , Plastics , Environmental Monitoring , Water Pollutants, Chemical/analysis , China
13.
J Mater Sci Mater Med ; 23(8): 1941-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22555503

ABSTRACT

Repair of massive bone loss remains a challenge to the orthopaedic surgeons. Autologous and allogenic bone grafts are choice for bone reconstructive surgery, but limited availability, risks of transmittable diseases and inconsistent clinical performances have prompted the development of tissue engineering. In the present work, the bone regeneration potential of nanohydroxyapatite/chitosan composite scaffolds were compared with pure chitosan scaffolds when implanted into segmental bone defects in rabbits. Critical size bone defects (6 mm diameter, 10 mm length) were created in the left femoral condyles of 43 adult New Zealand white rabbits. The femoral condyle bone defects were repaired by nanohydroxyapatite/chitosan compositions, pure chitosan or left empty separately. Defect-bridging was detected by plain radiograph and quantitative computer tomography at eight and 12 weeks after surgery. Tissue samples were collected for gross view and histological examination to determine the extent of new bone formation. Eight weeks after surgery, more irregular osteon formation was observed in the group treated with nanohydroxyapatite/chitosan composites compared with those treated with pure chitosan. 12 weeks after surgery, complete healing of the segmental bone defect was observed in the nanohydroxyapatite/chitosan-group, while the defect was still visible in the chitosan-group, although the depth of the defect had diminished. These observations suggest that the injectable nanohydroxyapatite/chitosan scaffolds are potential candidate materials for regeneration of bone loss.


Subject(s)
Bone Substitutes/administration & dosage , Bone Substitutes/chemical synthesis , Chitosan/chemistry , Durapatite/chemistry , Femoral Fractures/therapy , Nanocapsules/chemistry , Animals , Femoral Fractures/diagnostic imaging , Male , Nanocapsules/ultrastructure , Rabbits , Radiography , Treatment Outcome
14.
Sci Total Environ ; 804: 150138, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34517308

ABSTRACT

Microplastic (MP) fibers are present in all environmental media, yet little is known about their distribution, sources, and transport in the water column of marginal seas. In this study, we conducted an intensive sampling campaign in the marginal sea water column off southeast China, which is an area that is greatly influenced by high MP emissions. We found that hydrological effects largely regulated the spatial variations of MP fiber distribution and that MP fibers likely were not entering the South China Sea through terrestrial input from southeast China during the summer monsoon. Polyethylene terephthalate (PET) fibers were pervasive in the surface water (SW) (89.47%), subsurface chlorophyll maximum layer (SCML) (92.65%), and bottom water (BW) (94.29%) of the water column during the sampling period. Approximately 32% of MP fibers in the samples were smaller than 330 µm. The abundance of MP fibers in SW was significantly lower than that in the SCML and BW. Based on this observation, we estimated the inventory of MP fibers in the SW, SCML, and BW of the sampling area to be 1.377-1.378, 2.820-2.825, and 2.627-2.629 metric tons, respectively. These results improved our understanding of the source-to-sink process of MP fiber contamination in the water column of marginal seas.


Subject(s)
Microplastics , Water Pollutants, Chemical , China , Environmental Monitoring , Plastics , Prevalence , Seawater , Water Pollutants, Chemical/analysis
15.
Sci Total Environ ; 805: 150243, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34534870

ABSTRACT

Marine microplastic (MP) pollution is a global environmental problem that has received attention from scientific researchers and the public for the past several decades. However, without a suitably large-volume sampling method, the presence of MPs in subsurface water (< 5 m) is poorly understood. Here, MP content in subsurface water was determined using a pump-underway ship intake system along the cross-oceanic transect from the Pearl River Estuary to the Indian Ocean. The study regions have always been considered as one of the major MPs hotspots in the global oceans and still lack of study. Generally, MP abundance ranged between 0 and 4.97 items m-3, with an overall mean value of 0.40 ± 0.62 items m-3. A total of 679 MP particles were identified using µ-FT-IR. These collections identified polyethylene (PE), polypropylene (PP), and polyester (PET) as the major polymers represented (73.14-88.81%). The presence of MPs in coastal regions was significantly higher than that in the open ocean, revealing the contribution of land-based sources to marine MPs and the ocean dynamics. Therefore, an effective and feasible way to retard the penetration of MPs into the marine environment is to exhibit controls at the source. No significant correlation was found between the MP abundance and the physical and chemical properties of water. The results of the analysis of similarities (ANOSIM) and non-metric multidimensional scaling (NMDS) also showed that MP communities in different environments were significantly greater than the differences in different sites within the same environment. These findings of this study provide reliable information on MP distribution and characterization in cross-oceanic region of South China Sea and Eastern Indian Ocean, which will help to improve our understanding about the fate of MPs in the ocean.


Subject(s)
Microplastics , Water Pollutants, Chemical , China , Environmental Monitoring , Indian Ocean , Plastics , Spectroscopy, Fourier Transform Infrared , Water , Water Pollutants, Chemical/analysis
16.
J Hazard Mater ; 425: 127960, 2022 03 05.
Article in English | MEDLINE | ID: mdl-34896726

ABSTRACT

Microplastic (MP) pollution is ubiquitous in the terrestrial and marine environments, even in the air. However, ecological risk assessment studies of microplastics are scarce. In the present study, an ecological risk assessment model was built to evaluate the risks of microplastics in the Yangtze River Estuary and adjacent marine areas. A basic index database of the impacts of MP pollution on the ecosystem was constructed around three types of indices, namely, the pressure, status, and response indices. While the expert scoring method was used to determine the weights of these indices, in view of the complexity of the ecosystem in the Yangtze River Estuary, the fuzzy comprehensive evaluation method was used to evaluate its ecological risk. According to the model, microplastic pollution in the Yangtze River Estuary and adjacent marine areas was within a lower risk state, indicating that its risks for the marine ecosystem were still within a controllable range.


Subject(s)
Microplastics , Water Pollutants, Chemical , China , Ecosystem , Environmental Monitoring , Estuaries , Plastics/toxicity , Risk Assessment , Rivers , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
17.
Sci Total Environ ; 849: 157702, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-35908694

ABSTRACT

Atmospheric transport has been recognized as an important route for microplastics (MPs) entering the ocean since the early 2019s, yet little data of their distribution patterns in marine air are currently available. In this study, we conducted continuous measurements of atmospheric MPs in the marine boundary layer across the western Pacific Ocean. Results suggested that synthetic MPs comprised 25.89 % of all identified particles, with the most being cotton and cellulose (51.68 %). Research revealed that atmospheric synthetic microfibers (22.54 %) are higher than the proportion of the surface oceanic synthetic microfibers (8.20 %) in the recent study. Further, the size of airborne MP fibers over open ocean is probably not the limiting factor during long-range transport. The mean abundance of atmospheric MPs over the western Pacific Ocean during sampling period was 0.841 ± 0.698 items/100 m3. Regression analysis revealed an exponential relationship between average MP abundance and average longitude of sampled stations, and the average abundance of airborne MPs in coastal megacity is three orders of magnitude higher than that in sampled marine air of western Pacific. This study provides a better understanding on the impact of atmospheric transport of MPs within the global plastic cycle.


Subject(s)
Microplastics , Water Pollutants, Chemical , Cellulose , Environmental Monitoring/methods , Oceans and Seas , Plastics , Water Pollutants, Chemical/analysis
18.
Sci Total Environ ; 806(Pt 4): 150767, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34619199

ABSTRACT

Atmospheric transport is an important pathway through which microplastics (MPs) are widely exchanged between marine and terrestrial environments. However, the impacts of frequent extreme weather events, such as typhoons, on atmospheric MPs is poorly understood. To address this issue, we collected suspended atmospheric MPs (SAMPs) and rainfall samples in the South China Sea during Typhoon Sinlaku (2020). Our results revealed a higher abundance of suspended MPs (1.05 ± 0.55 n/100 m3) during the typhoon than in the pre-typhoon period (0.59 ± 0.48 n/100 m3). Nine polymer types were identified by micro-FTIR, among which the dominant were polyethylene terephthalate (PET, 62.82%) and polypropylene (PP, 19.23%). Moreover, rainfall appeared more inclined to remove larger sizes, more colors and more polymer types of MPs from the atmosphere. The trajectory source-receptor plot indicated that the typhoon significantly changed the pathway of MP transport in the atmosphere, including the direction and distance. To our knowledge, this is the first study to elucidate the impact of typhoons on atmospheric MP transportation. Our results indicate that airborne MPs may pose unexpected ecological risks to marine and coastal ecosystems due to their increased abundance from more distant sources, resulting from typhoon events.


Subject(s)
Cyclonic Storms , Water Pollutants, Chemical , China , Ecosystem , Environmental Monitoring , Microplastics , Plastics , Water Pollutants, Chemical/analysis
19.
J Hazard Mater ; 419: 126456, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34186430

ABSTRACT

Microplastic (MP) pollution in marine environments and organisms has received substantial international attention. However, long-term field studies of MPs are scarce. Here, we assessed the seasonal variation in MP abundance in the Zhoushan fishing ground (ZFG), one of the most abundant and productive fishing grounds worldwide, and analyzed the long-term MP accumulation in fish gastrointestinal tracts from September 2017 to June 2018. The most common MP particles in the ZFG were polyethylene terephthalate and polypropylene. After four seasons of continuous monitoring, we did not find accumulation of MPs in the fish after 10% KOH digestion. In total, 254 MP particles were removed from the gastrointestinal tracts of all fish. The average number of particles per fish was lower than that reported in previous global marine studies. There were significant differences among species. Moreover, this study provides the calculation of the weight of MPs ingested by fish and an estimate of the load of accumulated MPs in fish. According to the estimation, the load of MPs ingested by fish annually was approximately 3 kg in ZFG. These findings provide the long-term evidence of MP contamination in biota from the ZFG. The amounts of MPs ingested by fish require more detailed and improved investigation and estimation in further studies.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , China , Environmental Monitoring , Plastics , Seasons , Water Pollutants, Chemical/analysis
20.
Mar Pollut Bull ; 171: 112914, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34488149

ABSTRACT

The environmental pollution caused by microplastics has received increasing attention recently. In this paper, we present the results of research into the bacterium attached to microplastics in four coastal mariculture zones in southeast China during winter and summer. Polyethene and polypropylene are the main microplastics in the surface water of mariculture area. The differences between the bacteria species composition found on the surface of microplastics in winter and summer were less than that found in the planktonic bacteria, indicating that biofilms protect the bacterium that live inside. Potentially pathogenic Vibrio and Pseudomonas spp. were more abundant in samples from ShanTou and QuanZhou during the summer. Bacteria related to the degradation of microplastics were found extensively on the surface of microplastics at all of the sampling sites. More attention should be paid to the risks resulting from the accumulation of harmful bacteria on microplastic surfaces during the summer.


Subject(s)
Microplastics , Water Pollutants, Chemical , Biofilms , China , Environmental Monitoring , Plastics , Seasons , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL