Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 613
Filter
Add more filters

Publication year range
1.
Nature ; 628(8009): 776-781, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658683

ABSTRACT

Dissolved organic matter (DOM) is one of the most complex, dynamic and abundant sources of organic carbon, but its chemical reactivity remains uncertain1-3. Greater insights into DOM structural features could facilitate understanding its synthesis, turnover and processing in the global carbon cycle4,5. Here we use complementary multiplicity-edited 13C nuclear magnetic resonance (NMR) spectra to quantify key substructures assembling the carbon skeletons of DOM from four main Amazon rivers and two mid-size Swedish boreal lakes. We find that one type of reaction mechanism, oxidative dearomatization (ODA), widely used in organic synthetic chemistry to create natural product scaffolds6-10, is probably a key driver for generating structural diversity during processing of DOM that are rich in suitable polyphenolic precursor molecules. Our data suggest a high abundance of tetrahedral quaternary carbons bound to one oxygen and three carbon atoms (OCqC3 units). These units are rare in common biomolecules but could be readily produced by ODA of lignin-derived and tannin-derived polyphenols. Tautomerization of (poly)phenols by ODA creates non-planar cyclohexadienones, which are subject to immediate and parallel cycloadditions. This combination leads to a proliferation of structural diversity of DOM compounds from early stages of DOM processing, with an increase in oxygenated aliphatic structures. Overall, we propose that ODA is a key reaction mechanism for complexity acceleration in the processing of DOM molecules, creation of new oxygenated aliphatic molecules and that it could be prevalent in nature.


Subject(s)
Carbon , Fresh Water , Carbon/analysis , Carbon/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Fresh Water/chemistry , Lakes/chemistry , Lignin/chemistry , Oxidation-Reduction , Oxygen/chemistry , Polyphenols/chemistry , Rivers/chemistry , Sweden , Tannins/chemistry , Carbon Cycle
2.
Proc Natl Acad Sci U S A ; 119(43): e2109315119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36252021

ABSTRACT

The characterization of Neandertals' diets has mostly relied on nitrogen isotope analyses of bone and tooth collagen. However, few nitrogen isotope data have been recovered from bones or teeth from Iberia due to poor collagen preservation at Paleolithic sites in the region. Zinc isotopes have been shown to be a reliable method for reconstructing trophic levels in the absence of organic matter preservation. Here, we present the results of zinc (Zn), strontium (Sr), carbon (C), and oxygen (O) isotope and trace element ratio analysis measured in dental enamel on a Pleistocene food web in Gabasa, Spain, to characterize the diet and ecology of a Middle Paleolithic Neandertal individual. Based on the extremely low δ66Zn value observed in the Neandertal's tooth enamel, our results support the interpretation of Neandertals as carnivores as already suggested by δ15N isotope values of specimens from other regions. Further work could help identify if such isotopic peculiarities (lowest δ66Zn and highest δ15N of the food web) are due to a metabolic and/or dietary specificity of the Neandertals.


Subject(s)
Carnivora , Neanderthals , Tooth , Trace Elements , Animals , Carbon/analysis , Carbon Isotopes/analysis , Collagen , Dental Enamel/chemistry , Diet , Nitrogen Isotopes/analysis , Oxygen/analysis , Spain , Strontium/analysis , Tooth/chemistry , Trace Elements/analysis , Zinc/analysis , Zinc Isotopes/analysis
3.
Environ Sci Technol ; 58(19): 8464-8479, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38701232

ABSTRACT

Microplastics threaten soil ecosystems, strongly influencing carbon (C) and nitrogen (N) contents. Interactions between microplastic properties and climatic and edaphic factors are poorly understood. We conducted a meta-analysis to assess the interactive effects of microplastic properties (type, shape, size, and content), native soil properties (texture, pH, and dissolved organic carbon (DOC)) and climatic factors (precipitation and temperature) on C and N contents in soil. We found that low-density polyethylene reduced total nitrogen (TN) content, whereas biodegradable polylactic acid led to a decrease in soil organic carbon (SOC). Microplastic fragments especially depleted TN, reducing aggregate stability, increasing N-mineralization and leaching, and consequently increasing the soil C/N ratio. Microplastic size affected outcomes; those <200 µm reduced both TN and SOC contents. Mineralization-induced nutrient losses were greatest at microplastic contents between 1 and 2.5% of soil weight. Sandy soils suffered the highest microplastic contamination-induced nutrient depletion. Alkaline soils showed the greatest SOC depletion, suggesting high SOC degradability. In low-DOC soils, microplastic contamination caused 2-fold greater TN depletion than in soils with high DOC. Sites with high precipitation and temperature had greatest decrease in TN and SOC contents. In conclusion, there are complex interactions determining microplastic impacts on soil health. Microplastic contamination always risks soil C and N depletion, but the severity depends on microplastic characteristics, native soil properties, and climatic conditions, with potential exacerbation by greenhouse emission-induced climate change.


Subject(s)
Carbon , Climate , Microplastics , Nitrogen , Soil , Nitrogen/analysis , Soil/chemistry , Carbon/analysis , Soil Pollutants/analysis
4.
J Environ Manage ; 356: 120710, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38547822

ABSTRACT

In tropical regions, shifting from forests and traditional agroforestry to intensive plantations generates conflicts between human welfare (farmers' demands and societal needs) and environmental protection. Achieving sustainability in this transformation will inevitably involve trade-offs between multiple ecological and socioeconomic functions. To address these trade-offs, our study used a new methodological approach allowing the identification of transformation scenarios, including theoretical landscape compositions that satisfy multiple ecological functions (i.e., structural complexity, microclimatic conditions, organic carbon in plant biomass, soil organic carbon and nutrient leaching losses), and farmers needs (i.e., labor and input requirements, total income to land, and return to land and labor) while accounting for the uncertain provision of these functions and having an actual potential for adoption by farmers. We combined a robust, multi-objective optimization approach with an iterative search algorithm allowing the identification of ecological and socioeconomic functions that best explain current land-use decisions. The model then optimized the theoretical land-use composition that satisfied multiple ecological and socioeconomic functions. Between these ends, we simulated transformation scenarios reflecting the transition from current land-use composition towards a normative multifunctional optimum. These transformation scenarios involve increasing the number of optimized socioeconomic or ecological functions, leading to higher functional richness (i.e., number of functions). We applied this method to smallholder farms in the Jambi Province, Indonesia, where traditional rubber agroforestry, rubber plantations, and oil palm plantations are the main land-use systems. Given the currently practiced land-use systems, our study revealed short-term returns to land as the principal factor in explaining current land-use decisions. Fostering an alternative composition that satisfies additional socioeconomic functions would require minor changes ("low-hanging fruits"). However, satisfying even a single ecological indicator (e.g., reduction of nutrient leaching losses) would demand substantial changes in the current land-use composition ("moonshot"). This would inevitably lead to a profit decline, underscoring the need for incentives if the societal goal is to establish multifunctional agricultural landscapes. With many oil palm plantations nearing the end of their production cycles in the Jambi province, there is a unique window of opportunity to transform agricultural landscapes.


Subject(s)
Carbon , Soil , Humans , Soil/chemistry , Carbon/analysis , Rubber , Indonesia , Forests , Agriculture , Conservation of Natural Resources
5.
Proc Natl Acad Sci U S A ; 117(36): 21968-21977, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32839342

ABSTRACT

Biofuel and bioenergy systems are integral to most climate stabilization scenarios for displacement of transport sector fossil fuel use and for producing negative emissions via carbon capture and storage (CCS). However, the net greenhouse gas mitigation benefit of such pathways is controversial due to concerns around ecosystem carbon losses from land use change and foregone sequestration benefits from alternative land uses. Here, we couple bottom-up ecosystem simulation with models of cellulosic biofuel production and CCS in order to track ecosystem and supply chain carbon flows for current and future biofuel systems, with comparison to competing land-based biological mitigation schemes. Analyzing three contrasting US case study sites, we show that on land transitioning out of crops or pasture, switchgrass cultivation for cellulosic ethanol production has per-hectare mitigation potential comparable to reforestation and severalfold greater than grassland restoration. In contrast, harvesting and converting existing secondary forest at those sites incurs large initial carbon debt requiring long payback periods. We also highlight how plausible future improvements in energy crop yields and biorefining technology together with CCS would achieve mitigation potential 4 and 15 times greater than forest and grassland restoration, respectively. Finally, we show that recent estimates of induced land use change are small relative to the opportunities for improving system performance that we quantify here. While climate and other ecosystem service benefits cannot be taken for granted from cellulosic biofuel deployment, our scenarios illustrate how conventional and carbon-negative biofuel systems could make a near-term, robust, and distinctive contribution to the climate challenge.


Subject(s)
Biofuels/analysis , Carbon/analysis , Greenhouse Gases/analysis , Biofuels/adverse effects , Biotechnology , Carbon/metabolism , Cellulose/chemistry , Cellulose/metabolism , Crops, Agricultural/chemistry , Crops, Agricultural/metabolism , Ecosystem , Ethanol/metabolism , Greenhouse Gases/adverse effects
6.
J Environ Manage ; 348: 119206, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37898049

ABSTRACT

Improving environmental performance of energy- and carbon-intensive sectors represented by the iron and steel (IS) industry is of utmost importance to address the challenges of resource depletion and climate change worldwide. This article adopts a global-super-Epsilon-Based Measure (EBM) model with undesirable output for IS energy efficiency estimation, identifies efficiency determinants based on Technology-Organization-Environment (TOE) framework, and analyzes various pathways for efficiency improvement by grouping Necessary Condition Analysis (NCA) and fuzzy-set Qualitative Comparative Analysis (fsQCA). Empirical testing using statistical data of the G20 economies during 2010-2020 demonstrates that: 1) energy efficiency in the IS industry in G20 countries has risen amidst fluctuations, with developed countries performing more efficiently than developing countries; 2) individual factors do not constitute a compulsory condition to achieve high energy efficiency in the IS industry; 3) three different paths to achieve high energy performance are found, that is, technology-structure driven, regulation-economy-technology driven, and regulation-technology-production driven. Heterogenous policy recommendations for efficiency gains in the IS sector of different countries with divergent features are proposed accordingly.


Subject(s)
Carbon , Conservation of Energy Resources , Carbon/analysis , Steel , Iron , Climate Change , Efficiency , China , Economic Development , Carbon Dioxide/analysis
7.
J Environ Manage ; 329: 117019, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36542887

ABSTRACT

Cultivation of marshes (Ma) to arable like pasture (Pa) and sugarcane (Sa) usually causes soil organic carbon (SOC) pool depletion within a short time. However, there are some uncertainties about which molecular composition of soil organic matter (SOM) is sensitive to land use change (LUC). In the present work, molecular components of SOM were investigated and compared to better understand the impacts of LUC on the carbon cycle from Ma to Pa or Sa in Louisiana and Florida. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) analysis indicated that LUC greatly altered the molecular composition of SOM. More lignin, polysaccharide, and phonetic compounds were founded from Ma, and more nitrogen-containing compounds were identified from Sa. Lignin and phenolic compounds had unexpectedly the most decrease from native marsh-sugarcane/pasture transitions, showing the same trend as SOC. This meant that lignin and phenol were not as stable as expected when undergoing LUC. LUC significantly yield more molecular moieties and then resulted in higher complexities and diversities of molecular components in Pa or Sa than those in Ma. Principal component analysis implied higher contributions of old carbon to SOM in Ma, and fresh biomass input contributed more SOM in Sa. Our results implied that human activities such as LUC could not only alter carbon fluxes but also simultaneously change molecular mechanisms that drive the carbon cycle.


Subject(s)
Saccharum , Soil , Humans , Soil/chemistry , Wetlands , Lignin , Carbon/analysis , Pyrolysis , Edible Grain/chemistry , Phenols/analysis
8.
J Environ Sci (China) ; 124: 860-874, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182189

ABSTRACT

Particulate matter (PM2.5) samples were collected in the vicinity of an industrial chemical pole and analysed for organic and elemental carbon (OC and EC), 47 trace elements and around 150 organic constituents. On average, OC and EC accounted for 25.2% and 11.4% of the PM2.5 mass, respectively. Organic compounds comprised polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, anhydrosugars, phenolics, aromatic ketones, glycerol derivatives, aliphatic alcohols, sterols, and carboxyl groups, including aromatic, carboxylic and dicarboxylic acids. Enrichment factors > 100 were obtained for Pb, Cd, Zn, Cu, Sn, B, Se, Bi, Sb and Mo, showing the contribution of industrial emissions and nearby major roads. Principal component analysis revealed that vehicle, industrial and biomass burning emissions accounted for 66%, 11% and 9%, respectively, of the total PM2.5-bound PAHs. Some of the detected organic constituents are likely associated with plasticiser ingredients and thermal stabilisers used in the manufacture of PVC and other plastics in the industrial complex. Photooxidation products of both anthropogenic (e.g., toluene) and biogenic (e.g., isoprene and pinenes) precursors were also observed. It was estimated that biomass burning accounted for 13.8% of the PM2.5 concentrations and that secondary OC represented 37.6% of the total OC. The lifetime cancer risk from inhalation exposure to PM2.5-bound PAHs was found to be negligible, but it exceeded the threshold of 10-6 for metal(loi)s, mainly due to Cr and As.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Trace Elements , Air Pollutants/analysis , Alcohols , Cadmium/analysis , Carbon/analysis , Dicarboxylic Acids/analysis , Environmental Monitoring , Ketones , Lead/analysis , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Polyvinyl Chloride/analysis , Seasons , Sterols/analysis , Toluene/analysis , Trace Elements/analysis , Vehicle Emissions/analysis
9.
Environ Sci Technol ; 56(17): 12678-12687, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35947441

ABSTRACT

High-intensity wildfires alter the chemical composition of organic matter, which is expected to be distinctly different from low-intensity prescribed fires. Herein, we used pyrolysis gas chromatography/mass spectrometry (Py-GC/MS), in conjunction with solid-state 13C nuclear magnetic resonance (NMR) and Fourier transform infrared (FT-IR) spectroscopy, to assess chemical alterations from three wildfires and a long-term frequent prescribed fire site. Our results showed that black ash formed under moderate intensity burns contained less aromatic (ArH), polyaromatic hydrocarbon (PAH), and nitrogen-containing compounds (Ntg) but more lignin (LgC) and phenol compounds (PhC), compared to white ash formed under high intensity burns. Both 13C NMR and FT-IR confirmed a higher relative percentage of carboxyl carbon in white ash, indicating the potential for higher water solubility and more mobile carbon, relative to black ash. Compared to wildfires, ash from low-intensity prescribed fire contained less ArH, PAH, and Ntg and more LgC and PhC. Controlled laboratory burning trials indicated that organic matter alteration was sensitive to the burn temperature, but not related to the fuel type (pine vs fir) nor oxygen absence/presence at high burn temperatures. This study concludes that higher burn temperatures resulted in higher (poly)aromatic carbon/nitrogen and lower lignin/phenol compounds.


Subject(s)
Burns , Fires , Carbon/analysis , Gas Chromatography-Mass Spectrometry , Humans , Lignin , Nitrogen/analysis , Phenols , Pyrolysis , Spectroscopy, Fourier Transform Infrared
10.
Environ Sci Technol ; 56(22): 16494-16505, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36269179

ABSTRACT

Large reservoirs are hotspots for carbon emissions, and the continued input and decomposition of terrestrial dissolved organic matter (DOM) from upstream catchments is an important source of carbon emissions. Rainstorm events can cause a surge in DOM input; however, periodic sampling often fails to fully capture the impact of these discrete rainstorm events on carbon emissions. We conducted a set of frequent observations prior to and following a rainstorm event in a major reservoir Lake Qiandao (China; 580 km2) from June to July 2021 to investigate how rainstorms alter water chemistry and CO2 and CH4 emissions. We found that the mean CO2 efflux (FCO2) (13.2 ± 9.3 mmol m-2 d-1) and CH4 efflux (FCH4) (0.12 ± 0.02 mmol m-2 d-1) in the postrainstorm campaign were significantly higher than those in the prerainstorm campaign (-3.8 ± 3.0 and +0.06 ± 0.02 mmol m-2 d-1, respectively). FCO2 and FCH4 increased with increasing nitrogen and phosphorus levels, elevated DOM absorption (a350), specific UV absorbance SUVA254, and terrestrial humic-like fluorescence. Furthermore, FCO2 and FCH4 decreased with increasing chlorophyll-a (Chl-a), dissolved oxygen (DO), and pH. A five-day laboratory anoxic bioincubation experiment further revealed a depletion of terrestrial-DOM concurrent with increased CO2 and CH4 production. We conclude that rainstorms boost the emission of CO2 and CH4 fueled by the surge and decomposition of fresh terrestrially derived biolabile DOM in this and likely many other reservoir's major inflowing river mouths.


Subject(s)
Drinking Water , Rivers , Rivers/chemistry , Carbon/analysis , Carbon Dioxide/analysis , Lakes/chemistry , China
11.
J Environ Manage ; 319: 115749, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35982559

ABSTRACT

Filter based PM2.5 samples are typically used to measure its chemical constituents. Such measurements are made in dense sampling networks to assess regulatory compliance and for source apportionment. Thus, quantifying sampling artefacts is crucial. In this study, 24-h integrated PM2.5 samples collected over Bhopal, India a COALESCE (CarbOnaceous AerosoL Emissions, Source apportionment and ClimatE impacts) site during 2019 and 2020, were used to estimate particulate organic carbon (OC) artefacts. Total OC and its thermal fractions (OC1, OC2, OC3, and OC4) measured on 349 bare quartz (Q) and QbQ filters each, were used to determine OC positive artefacts on quartz filters. 50 QbT (Quartz behind Teflon) filters in conjunction with the simultaneous QbQ samples (a subset of the total QbQ) were used to estimate OC volatilization from Teflon filters. On average, adsorbed gaseous OC contributed 17% and 11% to the measured total OC during 2019 and 2020, respectively. Further, the volatilization loss of organics from Teflon filter (used to quantify PM2.5 mass) ranged between 7% and 9%, and 5% and 6% of the PM2.5 mass during 2019 and 2020, respectively. The results of this study provide the first systematic long-term evaluation of thermal carbon fraction-wise sampling artefacts, estimates of organic volatilization losses from Teflon filters and their implications to PM2.5 mass closure, over a regionally representative location in India.


Subject(s)
Air Pollutants , Aerosols/analysis , Air Pollutants/analysis , Artifacts , Carbon/analysis , Environmental Monitoring/methods , Particle Size , Particulate Matter/analysis , Polytetrafluoroethylene , Quartz , Seasons
12.
Glob Chang Biol ; 27(2): 417-434, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33068483

ABSTRACT

Despite increasing recognition of the critical role of coastal wetlands in mitigating climate change, sea-level rise, and salinity increase, soil organic carbon (SOC) sequestration mechanisms in estuarine wetlands remain poorly understood. Here, we present new results on the source, decomposition, and storage of SOC in estuarine wetlands with four vegetation types, including single Phragmites australis (P, habitat I), a mixture of P. australis and Suaeda salsa (P + S, habitat II), single S. salsa (S, habitat III), and tidal flat (TF, habitat IV) across a salinity gradient. Values of δ13 C increased with depth in aerobic soil layers (0-40 cm) but slightly decreased in anaerobic soil layers (40-100 cm). The δ15 N was significantly enriched in soil organic matter at all depths than in the living plant tissues, indicating a preferential decomposition of 14 N-enriched organic components. Thus, the kinetic isotope fractionation during microbial degradation and the preferential substrate utilization are the dominant mechanisms in regulating isotopic compositions in aerobic and anaerobic conditions, respectively. Stable isotopic (δ13 C and δ15 N), elemental (C and N), and lignin composition (inherited (Ad/Al)s and C/V) were not completely consistent in reflecting the differences in SOC decomposition or accumulation among four vegetation types, possibly due to differences in litter inputs, root distributions, substrate quality, water-table level, salinity, and microbial community composition/activity. Organic C contents and storage decreased from upstream to downstream, likely due to primarily changes in autochthonous sources (e.g., decreased onsite plant biomass input) and allochthonous materials (e.g., decreased fluvially transported upland river inputs, and increased tidally induced marine algae and phytoplankton). Our results revealed that multiple indicators are essential to unravel the degree of SOC decomposition and accumulation, and a combination of C:N ratios, δ13 C, δ15 N, and lignin biomarker provides a robust approach to decipher the decomposition and source of sedimentary organic matter along the river-estuary-ocean continuum.


Subject(s)
Soil , Wetlands , Biomarkers , Carbon/analysis , China , Lignin , Salinity
13.
Nature ; 523(7562): 580-3, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26223626

ABSTRACT

Earth's mightiest ocean current, the Antarctic Circumpolar Current (ACC), regulates the exchange of heat and carbon between the ocean and the atmosphere, and influences vertical ocean structure, deep-water production and the global distribution of nutrients and chemical tracers. The eastward-flowing ACC occupies a unique circumglobal pathway in the Southern Ocean that was enabled by the tectonic opening of key oceanic gateways during the break-up of Gondwana (for example, by the opening of the Tasmanian Gateway, which connects the Indian and Pacific oceans). Although the ACC is a key component of Earth's present and past climate system, the timing of the appearance of diagnostic features of the ACC (for example, low zonal gradients in water-mass tracer fields) is poorly known and represents a fundamental gap in our understanding of Earth history. Here we show, using geophysically determined positions of continent-ocean boundaries, that the deep Tasmanian Gateway opened 33.5 ± 1.5 million years ago (the errors indicate uncertainty in the boundary positions). Following this opening, sediments from Indian and Pacific cores recorded Pacific-type neodymium isotope ratios, revealing deep westward flow equivalent to the present-day Antarctic Slope Current. We observe onset of the ACC at around 30 million years ago, when Southern Ocean neodymium isotopes record a permanent shift to modern Indian-Atlantic ratios. Our reconstructions of ocean circulation show that massive reorganization and homogenization of Southern Ocean water masses coincided with migration of the northern margin of the Tasmanian Gateway into the mid-latitude westerly wind band, which we reconstruct at 64° S, near to the northern margin. Onset of the ACC about 30 million years ago coincided with major changes in global ocean circulation and probably contributed to the lower atmospheric carbon dioxide levels that appear after this time.


Subject(s)
Water Movements , Wind , Animals , Antarctic Regions , Atmosphere/chemistry , Carbon/analysis , Carbon Dioxide/analysis , Climate , Fishes , Fossils , Geologic Sediments/chemistry , History, Ancient , Hot Temperature , Isotopes , Neodymium/analysis , Oceans and Seas , Seawater/analysis , Seawater/chemistry , Tooth
14.
J Sep Sci ; 44(6): 1174-1194, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33034412

ABSTRACT

Safety analysis of aquatic products has been a challenge in recent years due to the serious matrix interference, complex characteristics, and ultra-low content of analytes. Introducing advanced materials to sample preparation technique can greatly improve the extraction, enrichment, and separation for further qualification and quantification of target analytes by coupling with consequent analytical technologies. Based on this scope, this review is mainly introducing advanced materials on the sample preparation for safety analysis of aquatic products in the past decade. After introducing the importance of the corresponding advanced materials, advanced materials are used for the sample preparation and in the improvement of safety analysis result of aquatic products. Advanced materials for sample preparation of aquatic products were reviewed including carbon materials, metal organic frameworks, covalent organic frameworks, molecularly/ions imprinted polymers, etc. Then, applications of the advanced materials for the analysis of specific fishery analytes (antibiotics, anesthetic, preservatives, etc.) were briefly introduced. Conclusions and perspectives on advanced materials for sample preparation and safety analysis of aquatic products were also presented.


Subject(s)
Carbon/analysis , Metal-Organic Frameworks/analysis , Organic Chemicals/analysis , Polymers/analysis , Water Pollutants, Chemical/analysis , Molecular Imprinting
15.
Ecotoxicol Environ Saf ; 220: 112413, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34139628

ABSTRACT

Aerobic composting is commonly used to dispose livestock manure and is an efficient way to reduce antibiotic resistance genes (ARGs). Here, the effects of different quality substrates on the fate of ARGs were assessed during manure composting. Results showed that the total relative abundances of ARGs and intI1 in additive treatments were lower than that in control, and high quality treatment with low C/N ratio and lignin significantly decreased the relative abundance of tetW, ermB, ermC, sul1 and sul2 at the end of composting. Additionally, higher quality treatment reduced the relative abundances of some pathogens such as Actinomadura and Pusillimonas, and some thermotolerant degrading-related bacteria comprising Pseudogracilibacillus and Sinibacillus on day 42, probably owing to the change of composting properties in piles. Structural equation models (SEMs) further verified that the physiochemical properties of composting were the dominant contributor to the variations in ARGs and they could also indirectly impact ARGs by influencing bacterial community and the abundance of intI1. Overall, these findings indicated that additives with high quality reduced the reservoir of antibiotic resistance genes of livestock manure compost.


Subject(s)
Composting/methods , Drug Resistance, Microbial/genetics , Genes, Bacterial/drug effects , Manure/analysis , Manure/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Carbon/analysis , Carbon/pharmacology , Chickens/microbiology , Lignin/analysis , Lignin/pharmacology , Microbiota/drug effects , Nitrogen/analysis , Nitrogen/pharmacology
16.
J Environ Manage ; 281: 111959, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33433366

ABSTRACT

Conversion of forest to rubber plantation is one of the most common land-use change in the humid tropical region. It is one of the fastest expanding farms that lead to various socioenvironmental issues. We investigated the effect of this land-use change on soil physico-chemical properties by surveying different succession stage rubber plantations, including monoculture and a mixture derived by mixing jungle rubber and a reference tropical rainforest. We also assessed the impact on stoichiometric ratios and allocation relationships of soil carbon (C), nitrogen (N), and phosphorus (P). Our results demonstrated that conversion of tropical rainforest to rubber monoculture resulted in serious soil degradation, with a lower level of water content, water holding capacities, total porosity, pH, and soil nutrients, and a higher level of soil bulk density. However, after transforming a rubber monoculture into a jungle rubber, the concentrations of soil total C, N, P, Ca, and Mg significantly increased, by 28%, 24%, 23%, 17%, and 39%, respectively. Meanwhile, soil salinity declined by 15%. Jungle rubber also exerted some desirable effects on soil physical properties, such as decreased soil bulk density, increased field capacity and non-porosity by 6%, 2%, and 33%, respectively. Like other tropical regions, soils in the present study areas are mainly under P limitation, but jungle rubber increased soil P turnover and thereby increases P availability. In conclusion, jungle rubber correcting the soil degradation resulted from rubber plantation on tropical forest soil. Given the improvements in soil quality, constructing multiple-strata and multi-species rubber agroforestry (e.g., jungle rubber) can be a promising approach to facilitate the restoration of the existing monoculture rubber plantations.


Subject(s)
Rubber , Soil , Carbon/analysis , China , Nitrogen/analysis , Rainforest
17.
Microbiology (Reading) ; 166(10): 918-935, 2020 10.
Article in English | MEDLINE | ID: mdl-32762802

ABSTRACT

Alphaproteobacteria belonging to the group of the sphingomonads are frequently found in biofilms colonizing pure-water systems, where they cause technical and hygienic problems. In this study, physiological properties of sphingomonads for biofilm formation on plastic surfaces were analysed. Sphingomonas sp. strain S2M10 was isolated from a used water-filtration membrane and submitted to transposon mutagenesis for isolating mutants with altered biofilm formation. Mutants showing strongly decreased biofilm formation carried transposon insertions in genes for the biosynthesis of the polysaccharide sphingan and for flagellar motility. Flagella-mediated attachment was apparently important for biofilm formation on plastic materials of intermediate hydrophobicity, while a mutant with defect in spnB, encoding the first enzyme in sphingan biosynthesis, showed no biofilm formation on all tested materials. Sphingan-dependent biofilm formation was induced in the presence of specific carbon sources while it was not induced in complex medium with yeast extract and tryptone. The regulation of sphingan-based biofilm formation was investigated by interfering with the CckA/ChpT/CtrA phosphorelay, a central signal-transduction pathway in most Alphaproteobacteria. Construction and ectopic expression of a kinase-deficient histidine kinase CckA caused cell elongation and massive sphingan-dependent cell aggregation. In addition, it caused increased activity of the promotor of spnB. In conclusion, these results indicate that sphingan-based biofilm formation by sphingomonads might be triggered by specific carbon sources under prototrophic conditions resembling a milieu that often prevails in pure-water systems.


Subject(s)
Biofilms/growth & development , Plastics/metabolism , Polysaccharides, Bacterial/biosynthesis , Sphingomonas/physiology , Bacterial Adhesion , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon/analysis , Carbon/metabolism , DNA Transposable Elements/genetics , Flagella/genetics , Flagella/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism , Mutation , Plastics/chemistry , Polysaccharides, Bacterial/genetics , Signal Transduction , Sphingomonas/genetics , Sphingomonas/isolation & purification , Sphingomonas/metabolism , Transcription, Genetic , Water Microbiology
18.
Rapid Commun Mass Spectrom ; 34(10): e8641, 2020 May 30.
Article in English | MEDLINE | ID: mdl-31965648

ABSTRACT

RATIONALE: Although the 2 H/1 H ratio of the carbon-bound hydrogens (C-Hs) in α-cellulose extracted from higher plants has long been used successfully for climate, environmental and metabolic studies, the assumption that bleaching with acidified NaClO2 to remove lignin before pure α-cellulose can be obtained does not alter the 2 H/1 H ratio of α-cellulose C-Hs has nonetheless not been tested. METHODS: For reliable application of the 2 H/1 H ratio of α-cellulose C-H, we processed plant materials representing different phytochemistries and photosynthetic carbon assimilation modes in isotopically contrasting bleaching media (with an isotopic difference of 273 mUr). All the isotope ratios were measured by elemental analyzer/isotope ratio mass spectrometry (EA/IRMS). RESULTS: Our results show that H from the bleaching medium does appear in the final pure α-cellulose product, although the isotopic alteration to the C-H in α-cellulose due to the incorporation of processing H from the medium is small if isotopically "natural" water is used to prepare the processing medium. However, under prolonged bleaching such an isotope effect can be significant, implying that standardizing the bleaching process is necessary for reliable 2 H/1 H measurement. CONCLUSIONS: The currently adopted method for removing lignin for α-cellulose extraction from higher plant materials with acidified NaClO2 bleaching is considered acceptable in terms of preserving the isotopic fidelity if isotopically "natural" water is used to prepare the bleaching solution.


Subject(s)
Cellulose/chemistry , Hydrogen/analysis , Plants/chemistry , Carbon/analysis , Deuterium/analysis , Hydrolysis , Mass Spectrometry/methods , Water/chemistry
19.
World J Microbiol Biotechnol ; 36(6): 88, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32500290

ABSTRACT

This work reports the production of MEL-A using coconut water as the carbon source. Proximate analysis of coconut water indicated the presence of nutrients necessary for growth of the organism and production of desired metabolite. The amount of MEL produced using coconut water was 3.85 g/L (± 0.35) with 74% of it being MEL-A when compared to 2.58 g/L (± 0.15) with 60% being MEL-A using glycerol, a conventional carbon source. MEL-A from coconut water consisted of 38.1% long-chain saturated fatty acids (C16:0 and C18:0) whereas with glycerol it was 9.6%. The critical micellar concentration of the biosurfactant from coconut water was 2.32 ± 0.21 µM when compared to 4.41 ± 0.25 µM from glycerol. The stability of O/W emulsion was reduced by 50% and 90% after incubation for 8 h in the case of MEL-A from coconut water and glycerol respectively when compared to synthetic surfactant, Tween-20. MEL-A from both the sources exhibited free radical scavenging activity (DPPH assay) in a dose-dependent manner wherein MEL-A from coconut water showed two fold higher activity than the other. The interaction of coconut water MEL-A with DPPC for drug encapsulation applications was also studied. The DSC measurements showed the differences in the interaction of drugs with DPPC/MEL-A liposome. The differences were also observed in the solubility of drugs after encapsulation with DPPC/MEL-A liposome.


Subject(s)
Basidiomycota/metabolism , Cocos/metabolism , Glycolipids/biosynthesis , Carbon/analysis , Carbon/chemistry , Cocos/chemistry , Drug Delivery Systems/methods , Emulsions/chemistry , Emulsions/isolation & purification , Fatty Acids/analysis , Fatty Acids/chemistry , Fermentation , Glycerol/metabolism , Glycolipids/chemistry , Glycolipids/isolation & purification , Liposomes , Micelles , Surface-Active Agents/chemistry , Surface-Active Agents/isolation & purification
20.
Anal Chem ; 91(8): 5270-5277, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30880388

ABSTRACT

Surface coating determined the sensitivity and stability of surface-enhanced Raman scattering (SERS) tags in bioanalysis. The reported various coatings suffered from the drawbacks of a lack of rigidity, stability, or synthesis versatility. Herein, we demonstrated robust polystyrene (PS) coated SERS tags that could be prepared by an easy and universal approach. Taking advantages of biocompatible, transparent, compact properties of PS shell, the coated tags showed satisfactory sensitivity, biocompatibility, and superior structural stability in cell and in vivo imaging applications. More importantly, the PS coating strategy allowed for the encapsulation of SERS tags encoded with not only thiolated but also nonthiolated Raman reporters without loss of sensitivity, as exemplified in the synthesis of 9 different resonant dye-encoded tags. Moreover, the coating of SERS tags with various kinds of substrates was achieved via the same standard protocol. Comparing with widespread silica coated tags, the PS coated ones were more stable in harsh conditions and had an easily expanded ultrasensitive (resonant) tags library with much lower cost (no need of expensive sulfhydryl/isothiocyano reporters with limited types), illustrating great promise as standard analytical tools of commercialized value for bioanalysis, medical diagnostics, and environmental science studies.


Subject(s)
Polystyrenes/chemistry , Carbon/analysis , Particle Size , Peptides/analysis , Proteins/analysis , Silicon Dioxide/analysis , Spectrum Analysis, Raman , Surface Properties , Titanium/analysis
SELECTION OF CITATIONS
SEARCH DETAIL