Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Cell ; 184(6): 1636-1647, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33639085

ABSTRACT

Rapid increases of energy consumption and human dependency on fossil fuels have led to the accumulation of greenhouse gases and consequently, climate change. As such, major efforts have been taken to develop, test, and adopt clean renewable fuel alternatives. Production of bioethanol and biodiesel from crops is well developed, while other feedstock resources and processes have also shown high potential to provide efficient and cost-effective alternatives, such as landfill and plastic waste conversion, algal photosynthesis, as well as electrochemical carbon fixation. In addition, the downstream microbial fermentation can be further engineered to not only increase the product yield but also expand the chemical space of biofuels through the rational design and fine-tuning of biosynthetic pathways toward the realization of "designer fuels" and diverse future applications.


Subject(s)
Biofuels/analysis , Sustainable Development , Biosynthetic Pathways , Carbon Cycle , Humans , Lignin/metabolism , Waste Products
2.
Nature ; 628(8009): 776-781, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658683

ABSTRACT

Dissolved organic matter (DOM) is one of the most complex, dynamic and abundant sources of organic carbon, but its chemical reactivity remains uncertain1-3. Greater insights into DOM structural features could facilitate understanding its synthesis, turnover and processing in the global carbon cycle4,5. Here we use complementary multiplicity-edited 13C nuclear magnetic resonance (NMR) spectra to quantify key substructures assembling the carbon skeletons of DOM from four main Amazon rivers and two mid-size Swedish boreal lakes. We find that one type of reaction mechanism, oxidative dearomatization (ODA), widely used in organic synthetic chemistry to create natural product scaffolds6-10, is probably a key driver for generating structural diversity during processing of DOM that are rich in suitable polyphenolic precursor molecules. Our data suggest a high abundance of tetrahedral quaternary carbons bound to one oxygen and three carbon atoms (OCqC3 units). These units are rare in common biomolecules but could be readily produced by ODA of lignin-derived and tannin-derived polyphenols. Tautomerization of (poly)phenols by ODA creates non-planar cyclohexadienones, which are subject to immediate and parallel cycloadditions. This combination leads to a proliferation of structural diversity of DOM compounds from early stages of DOM processing, with an increase in oxygenated aliphatic structures. Overall, we propose that ODA is a key reaction mechanism for complexity acceleration in the processing of DOM molecules, creation of new oxygenated aliphatic molecules and that it could be prevalent in nature.


Subject(s)
Carbon , Fresh Water , Carbon/analysis , Carbon/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Fresh Water/chemistry , Lakes/chemistry , Lignin/chemistry , Oxidation-Reduction , Oxygen/chemistry , Polyphenols/chemistry , Rivers/chemistry , Sweden , Tannins/chemistry , Carbon Cycle
3.
PLoS Biol ; 19(3): e3001130, 2021 03.
Article in English | MEDLINE | ID: mdl-33784293

ABSTRACT

Microplastics (MPs), plastic particles <5 mm, are found in environments, including terrestrial ecosystems, planetwide. Most research so far has focused on ecotoxicology, examining effects on performance of soil biota in controlled settings. As research pivots to a more ecosystem and global change perspective, questions about soil-borne biogeochemical cycles become important. MPs can affect the carbon cycle in numerous ways, for example, by being carbon themselves and by influencing soil microbial processes, plant growth, or litter decomposition. Great uncertainty surrounds nano-sized plastic particles, an expected by-product of further fragmentation of MPs. A major concerted effort is required to understand the pervasive effects of MPs on the functioning of soils and terrestrial ecosystems; importantly, such research needs to capture the immense diversity of these particles in terms of chemistry, aging, size, and shape.


Subject(s)
Carbon Cycle/drug effects , Microplastics/analysis , Microplastics/toxicity , Soil/chemistry , Carbon/metabolism , Ecosystem , Soil Microbiology
4.
J Environ Manage ; 364: 121429, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870791

ABSTRACT

Soil organic carbon (SOC) pool, the largest part of terrestrial ecosystem, controls global terrestrial carbon balance and consequently presented carbon cycle-climate feedback in climate projections. Microplastics, (MPs, <5 mm) as common pollutants in soil ecosystems, have an obvious impact on soil-borne carbon circulation by affecting soil microbial processes, which play a central role in regulating SOC conversion. In this review, we initially presented the sources, properties and ecological risks of MPs in soil ecosystem, and then the differentiated effects of MPs on the component of SOC, including dissolved organic carbon, soil microbial biomass carbon and easily oxidized organic carbon varying with the types and concentrations of MPs, the soil types, etc. As research turns into a broader perspective, greenhouse gas emissions dominated by the mineralization of SOC coming into view since it can be significantly affected by MPs and is closely associated with soil microbial respiration. The pathways of MPs impacting soil microbes-driven carbon conversion include changing microbial community structure and composition, the functional enzyme's activity and the abundance and expression of functional genes. However, numerous uncertainties still exist regarding the microbial mechanisms in the deeper biochemical process. More comprehensive studies are necessary to explore the affected footprint and provide guidance for finding the evaluation criterion of MPs affecting climate change.


Subject(s)
Carbon , Ecosystem , Greenhouse Gases , Soil Microbiology , Soil , Greenhouse Gases/analysis , Soil/chemistry , Microplastics , Climate Change , Carbon Cycle
5.
J Environ Manage ; 334: 117529, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36801693

ABSTRACT

Massive production and spread application of plastics have led to the accumulation of numerous plastics in the global environment so that the proportion of carbon storage in these polymers also increases. Carbon cycle is of fundamental significance to global climate change and human survival and development. With the continuous increase of microplastics, undoubtedly, there carbons will continue to be introduced into the global carbon cycle. In this paper, the impact of microplastics on microorganisms involved in carbon transformation is reviewed. Micro/nanoplastics affect carbon conversion and carbon cycle by interfering with biological fixation of CO2, microbial structure and community, functional enzymes activity, the expression of related genes, and the change of local environment. Micro/nanoplastic abundance, concentration and size could significantly lead to difference in carbon conversion. In addition, plastic pollution can further affect the blue carbon ecosystem reduce its ability to store CO2 and marine carbon fixation capacity. Nevertheless, problematically, limited information is seriously insufficient in understanding the relevant mechanisms. Accordingly, it is required to further explore the effect of micro/nanoplastics and derived organic carbon on carbon cycle under multiple impacts. Under the influence of global change, migration and transformation of these carbon substances may cause new ecological and environmental problems. Additionally, the relationship between plastic pollution and blue carbon ecosystem and global climate change should be timely established. This work provides a better perspective for the follow-up study of the impact of micro/nanoplastics on carbon cycle.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Plastics , Ecosystem , Carbon , Carbon Dioxide , Follow-Up Studies , Carbon Cycle , Water Pollutants, Chemical/analysis
6.
Environ Microbiol ; 23(8): 4561-4575, 2021 08.
Article in English | MEDLINE | ID: mdl-34196089

ABSTRACT

Bacteroidetes are thought to be specialized for the degradation of algae-derived ocean polysaccharides. Here, we show that Bacteroidetes are the predominant phylum in deep-sea sediments and possess more genes associated with polysaccharides degradation than other bacteria. We have isolated a novel Bacteroidetes species from the deep-sea sediments by using a special polysaccharide containing medium, Maribellus comscasis WC007, which possesses 82 putative polysaccharide utilization loci (PULs) containing 374 glycoside hydrolases and 82 SusC/D pairs (Sus indicates starch utilization system; SusC represents the actual TonB-dependent transporter, and SusD is an associated substrate-binding outer membrane lipoprotein) together with 58 sigma/antisigma factors. Through an in-depth analysis of these PULs, strain WC007 can efficiently degrade numerous different polysaccharides including cellulose, pectin, fucoidan, mannan, xylan and starch, which are verified by growth assays. Notably, we find that cellulose has the most significant growth-promoting effect on M. comscasis WC007. And based on scanning electron microscope observation, transcriptomics and metabolomics, we further report on the underlying mechanisms of cellulose degradation and utilization, as well as potential contributions to the carbon cycle. Overall, our results suggest that Bacteroidetes may play key roles in the carbon cycle, likely due to their high abundance and prominent polysaccharide degradation capabilities.


Subject(s)
Bacteroidetes , Cellulose , Bacteroidetes/genetics , Carbon Cycle , Glycoside Hydrolases , Mannans , Polysaccharides
7.
Environ Microbiol ; 23(1): 224-238, 2021 01.
Article in English | MEDLINE | ID: mdl-33140552

ABSTRACT

Wood and litter degrading fungi are the main decomposers of lignocellulose and thus play a key role in carbon cycling in nature. Here, we provide evidence for a novel lignocellulose degradation strategy employed by the litter degrading fungus Agaricus bisporus (known as the white button mushroom). Fusion of hyphae allows this fungus to synchronize the activity of its mycelium over large distances (50 cm). The synchronized activity has a 13-h interval that increases to 20 h before becoming irregular and it is associated with a 3.5-fold increase in respiration, while compost temperature increases up to 2°C. Transcriptomic analysis of this burst-like phenomenon supports a cyclic degradation of lignin, deconstruction of (hemi-) cellulose and microbial cell wall polymers, and uptake of degradation products during vegetative growth of A. bisporus. Cycling in expression of the ligninolytic system, of enzymes involved in saccharification, and of proteins involved in nutrient uptake is proposed to provide an efficient way for degradation of substrates such as litter.


Subject(s)
Agaricus/metabolism , Biodegradation, Environmental , Lignin/metabolism , Organic Chemicals/metabolism , Polymers/metabolism , Agaricus/enzymology , Carbon Cycle , Cellulose/metabolism , Mycelium/metabolism , Nutrients , Oxygen/metabolism , Wood/metabolism
8.
Proc Natl Acad Sci U S A ; 115(25): 6428-6433, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29866821

ABSTRACT

The resurrection of ancestral enzymes of now-extinct organisms (paleogenetics) is a developing field that allows the study of evolutionary hypotheses otherwise impossible to be tested. In the present study, we target fungal peroxidases that play a key role in lignin degradation, an essential process in the carbon cycle and often a limiting step in biobased industries. Ligninolytic peroxidases are secreted by wood-rotting fungi, the origin of which was recently established in the Carboniferous period associated with the appearance of these enzymes. These first peroxidases were not able to degrade lignin directly and used diffusible metal cations to attack its phenolic moiety. The phylogenetic analysis of the peroxidases of Polyporales, the order in which most extant wood-rotting fungi are included, suggests that later in evolution these enzymes would have acquired the ability to degrade nonphenolic lignin using a tryptophanyl radical interacting with the bulky polymer at the surface of the enzyme. Here, we track this powerful strategy for lignin degradation as a phenotypic trait in fungi and show that it is not an isolated event in the evolution of Polyporales. Using ancestral enzyme resurrection, we study the molecular changes that led to the appearance of the same surface oxidation site in two distant peroxidase lineages. By characterization of the resurrected enzymes, we demonstrate convergent evolution at the amino acid level during the evolution of these fungi and track the different changes leading to phylogenetically distant ligninolytic peroxidases from ancestors lacking the ability to degrade nonphenolic lignin.


Subject(s)
Lignin/metabolism , Peroxidases/metabolism , Biological Evolution , Carbon Cycle/physiology , Fungal Proteins/metabolism , Fungi/metabolism , Oxidation-Reduction , Phylogeny , Polymers/metabolism , Polyporales/metabolism
9.
Ecol Lett ; 22(1): 159-169, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30556313

ABSTRACT

Climate warming affects plant physiology through genetic adaptation and phenotypic plasticity, but little is known about how these mechanisms influence ecosystem processes. We used three elevation gradients and a reciprocal transplant experiment to show that temperature causes genetic change in the sedge Eriophorum vaginatum. We demonstrate that plants originating from warmer climate produce fewer secondary compounds, grow faster and accelerate carbon dioxide (CO2 ) release to the atmosphere. However, warmer climate also caused plasticity in E. vaginatum, inhibiting nitrogen metabolism, photosynthesis and growth and slowing CO2 release into the atmosphere. Genetic differentiation and plasticity in E. vaginatum thus had opposing effects on CO2 fluxes, suggesting that warming over many generations may buffer, or reverse, the short-term influence of this species over carbon cycle processes. Our findings demonstrate the capacity for plant evolution to impact ecosystem processes, and reveal a further mechanism through which plants will shape ecosystem responses to climate change.


Subject(s)
Carbon Cycle , Plastics , Carbon , Carbon Dioxide , Climate Change , Ecosystem , Plants
10.
Glob Chang Biol ; 24(1): e183-e189, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28755386

ABSTRACT

Current climate and land-use changes affect regional and global cycles of silicon (Si), with yet uncertain consequences for ecosystems. The key role of Si in marine ecology by controlling algae growth is well recognized but research on terrestrial ecosystems neglected Si since not considered an essential plant nutrient. However, grasses and various other plants accumulate large amounts of Si, and recently it has been hypothesized that incorporation of Si as a structural plant component may substitute for the energetically more expensive biosynthesis of lignin. Herein, we provide evidence supporting this hypothesis. We demonstrate that in straw of rice (Oryza sativa) deriving from a large geographic gradient across South-East Asia, the Si concentrations (ranging from 1.6% to 10.7%) are negatively related to the concentrations of carbon (31.3% to 42.5%) and lignin-derived phenols (32 to 102 mg/g carbon). Less lignin may explain results of previous studies that Si-rich straw decomposes faster. Hence, Si seems a significant but hardly recognized factor in organic carbon cycling through grasslands and other ecosystems dominated by Si-accumulating plants.


Subject(s)
Carbon Cycle , Lignin/biosynthesis , Oryza/metabolism , Silicon/metabolism , Carbon/metabolism , Ecosystem , Plant Stems
11.
World J Microbiol Biotechnol ; 34(7): 89, 2018 Jun 09.
Article in English | MEDLINE | ID: mdl-29886519

ABSTRACT

With rapid technology progress and cost reduction, clean hydrogen from water electrolysis driven by renewable powers becomes a potential feedstock for CO2 fixation by hydrogen-oxidizing bacteria. Cupriavidus necator (formally Ralstonia eutropha), a representative member of the lithoautotrophic prokaryotes, is a promising producer of polyhydroxyalkanoates and single cell proteins. This paper reviews the fundamental properties of the hydrogen-oxidizing bacterium, the metabolic activities under limitation of individual gases and nutrients, and the value-added products from CO2, including the products with large potential markets. Gas fermentation and bioreactor safety are discussed for achieving high cell density and high productivity of desired products under chemolithotrophic conditions. The review also updates the recent research activities in metabolic engineering of C. necator to produce novel metabolites from CO2.


Subject(s)
Bacteria/metabolism , Carbon Cycle , Carbon Dioxide/metabolism , Cupriavidus necator/metabolism , Hydrogen/metabolism , Bioreactors , Chemoautotrophic Growth/physiology , Cupriavidus necator/genetics , Dietary Proteins/metabolism , Fermentation , Gases/metabolism , Hydrogenase/metabolism , Hydroxybutyrates/metabolism , Lipid Metabolism , Metabolic Engineering , Oxidation-Reduction , Polyesters/metabolism , Polyhydroxyalkanoates/metabolism
12.
Environ Microbiol ; 19(11): 4392-4416, 2017 11.
Article in English | MEDLINE | ID: mdl-28771968

ABSTRACT

Marinimicrobia bacteria are widespread in subeuphotic areas of the oceans and particularly abundant in oxygen minimum zones (OMZs). Information on Marinimicrobia metabolism is sparse, making the biogeochemical influence of this group challenging to predict. Here, metagenome-assembled genomes representing Marinimicrobia subgroups PN262000N21 and ARCTIC96B-7 were retrieved to near completion (97% and 94%) from OMZ metagenomes, with contamination (14.1%) observed only in ARCTIC96B-7. Genes for aerobic carbon monoxide (CO) oxidation, polysulfide metabolism and hydrogen utilization were identified only in PN262000N21, while genes for partial denitrification occurred in both genomes. Transcripts mapping to these genomes increased from <0.3% of total mRNA from the oxic zone to a max of 22% under anoxia. ARCTIC96B-7 transcript representation decreased an order of magnitude from non-sulfidic to sulfidic depths. In contrast, PN262000N21 representation was relatively constant throughout the OMZ, although transcripts encoding sulfur-utilizing proteins, including sulfur transferases, were enriched at sulfidic depths. PN262000N21 transcripts encoding a protein with fibronectin domains similar to those in cellulosome-producing bacteria were also abundant, suggesting a potential for high molecular weight carbon cycling. These data provide omic-level descriptions of metabolic potential and activity in OMZ-associated Marinimicrobia, suggesting differentiation between subgroups with roles in carbon and dissimilatory inorganic nitrogen and sulfur cycling.


Subject(s)
Anaerobiosis/physiology , Bacteria , Genome, Bacterial/genetics , Metagenome/genetics , Oxygen/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Carbon Cycle/physiology , Carbon Monoxide/metabolism , Cellulose/metabolism , DNA, Bacterial/genetics , Denitrification/genetics , Nitrogen/metabolism , Oceans and Seas , Oxidation-Reduction , Sulfides/metabolism , Sulfur/metabolism , Water/metabolism
13.
Appl Microbiol Biotechnol ; 101(11): 4363-4369, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28466110

ABSTRACT

The white button mushroom Agaricus bisporus is economically the most important commercially produced edible fungus. It is grown on carbon- and nitrogen-rich substrates, such as composted cereal straw and animal manure. The commercial mushroom production process is usually performed in buildings or tunnels under highly controlled environmental conditions. In nature, the basidiomycete A. bisporus has a significant impact on the carbon cycle in terrestrial ecosystems as a saprotrophic decayer of leaf litter. In this mini-review, the fate of the compost plant cell wall structures, xylan, cellulose and lignin, is discussed. A comparison is made from the structural changes observed to the occurrence and function of enzymes for lignocellulose degradation present, with a special focus on the extracellular enzymes produced by A. bisporus. In addition, recent advancements in whole genome level molecular studies in various growth stages of A. bisporus in compost are reviewed.


Subject(s)
Agaricus/enzymology , Cellulose/metabolism , Lignin/metabolism , Xylans/metabolism , Agaricus/genetics , Agaricus/growth & development , Animals , Carbon/metabolism , Carbon Cycle , Genome, Fungal , Mycelium/growth & development , Nitrogen/metabolism , Soil , Xylans/chemistry
14.
Environ Microbiol ; 18(8): 2455-69, 2016 09.
Article in English | MEDLINE | ID: mdl-26627043

ABSTRACT

The alpha diversity of foliar fungal endophytes (FEs) in leaves of Betula ermanii in a subalpine timberline ecotone on Changbai Mountain, China increased with elevation. There were also significant differences in beta diversity along the elevation gradient. Among the environmental variables analysed, leaf carbon significantly increased with elevation, and was the most significant environmental factor that constrained the alpha and beta diversity in the FE communities. Tree height and the cellulose, lignin, and carbon/nitrogen ratio of the leaves also affected the FE assemblages. When controlled for the effects of elevation, leaf carbon was still the main driver of changes in evenness, Shannon diversity and FE community composition. The results offered clues of the carbon acquisition strategy of the foliar FEs across this cold terrain. There was strong multicollinearity between both annual precipitation and temperature, with elevation (|Pearson r| > 0.986), so the effects of these climatic variables were impossible to separate; however, they may play key roles, and the direct effects of both warrant further investigation. As pioneer decomposers of leaf litter, variations in diversity and community composition of FE measured here may feedback and influence carbon cycling and dynamics in these forest ecosystems.


Subject(s)
Betula/microbiology , Carbon/metabolism , Chytridiomycota/metabolism , Endophytes/metabolism , Glomeromycota/metabolism , Carbon Cycle/physiology , China , Chytridiomycota/isolation & purification , Ecosystem , Forests , Glomeromycota/isolation & purification , Lignin , Nitrogen/metabolism , Plant Leaves/microbiology , Trees/microbiology
15.
Chembiochem ; 17(16): 1491-4, 2016 08 17.
Article in English | MEDLINE | ID: mdl-27237045

ABSTRACT

High production of polymer-grade d-lactic acid is urgently required, particularly for the synthesis of polylactic acid. High-temperature fermentation has multiple advantages, such as lower equipment requirement and energy consumption, which are essential for lowering operating costs. We identified and introduced a unique d-lactate dehydrogenase into a thermotolerant butane-2,3-diol-producing strain. Carbon flux "trapping" was achieved by a "trapping point" created by combination of the introduced enzyme and the host efflux pump, which afforded irreversible transport of d-lactic acid. The overall carbon flux of the engineered strain was significantly enhanced and was redistributed predominantly to d-lactic acid. Under optimized conditions at 50 °C, d-lactic acid reached the highest titer (226.6 g L(-1) ) reported to date. This discovery allows us to extend the carbon flux trapping strategy to engineering complex metabolic networks.


Subject(s)
Carbon Cycle , Lactate Dehydrogenases/metabolism , Lactic Acid/biosynthesis , Polymers/metabolism , Temperature , Lactate Dehydrogenases/chemistry , Lactic Acid/chemistry , Polymers/chemistry , Time Factors
16.
Appl Environ Microbiol ; 82(22): 6518-6530, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27590813

ABSTRACT

As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world. IMPORTANCE: The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change.


Subject(s)
Bacteria/metabolism , Carbohydrate Metabolism , Climate Change , Forests , Global Warming , Soil Microbiology , Actinobacteria/genetics , Actinobacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Carbon/metabolism , Carbon Cycle , Carbon Dioxide/metabolism , Cellulose/metabolism , Ecosystem , Eukaryota/genetics , Eukaryota/metabolism , Metagenomics/methods , Microbial Consortia/genetics , Microbial Consortia/physiology , Time Factors , Xylans/metabolism
17.
Glob Chang Biol ; 21(5): 1762-76, 2015 May.
Article in English | MEDLINE | ID: mdl-25472464

ABSTRACT

Terrestrial ecosystem and carbon cycle feedbacks will significantly impact future climate, but their responses are highly uncertain. Models and tipping point analyses suggest the tropics and arctic/boreal zone carbon-climate feedbacks could be disproportionately large. In situ observations in those regions are sparse, resulting in high uncertainties in carbon fluxes and fluxes. Key parameters controlling ecosystem carbon responses, such as plant traits, are also sparsely observed in the tropics, with the most diverse biome on the planet treated as a single type in models. We analyzed the spatial distribution of in situ data for carbon fluxes, stocks and plant traits globally and also evaluated the potential of remote sensing to observe these quantities. New satellite data products go beyond indices of greenness and can address spatial sampling gaps for specific ecosystem properties and parameters. Because environmental conditions and access limit in situ observations in tropical and arctic/boreal environments, use of space-based techniques can reduce sampling bias and uncertainty about tipping point feedbacks to climate. To reliably detect change and develop the understanding of ecosystems needed for prediction, significantly, more data are required in critical regions. This need can best be met with a strategic combination of remote and in situ data, with satellite observations providing the dense sampling in space and time required to characterize the heterogeneity of ecosystem structure and function.


Subject(s)
Carbon Cycle/physiology , Ecosystem , Models, Theoretical , Plants/chemistry , Satellite Imagery/methods , Chlorophyll/analysis , Lignin/analysis , Nitrogen/analysis , Satellite Imagery/trends
18.
Sci Total Environ ; 924: 171623, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38485006

ABSTRACT

The impact of microplastics in lake water environments on microalgae carbon fixation and microplastic sedimentation has attracted global attention. The molecular dynamic simulation method was used to design microplastic additive proportioning schemes for improving microalgae carbon fixation and microplastic sedimentation. Results showed that the harm of microplastics can be effectively alleviated by adjusting the proportioning scheme of plastic additives. Besides, the decabromodiphenyl oxide (DBDPO) was identified as the main additive that affect the microalgae carbon fixation and microplastic sedimentation. Thus, a molecular modification based on CiteSpace visual analysis was firstly used and 12 DBDPO derivatives were designed. After the screening, DBDPO-2 and DBDPO-5 became the environmentally friendly DBDPO alternatives, with the highest microalgae carbon fixation and microplastic sedimentation ability enhancement of over 25 %. Compared to DBDPO, DBDPO derivatives were found easier to stimulate the adsorption and binding ability of surrounding hotspot amino acids to CO2 and ribulose-5-phosphate, increasing the solvent-accessible surface area of microplastics, thus improving the microalgae carbon fixation and microplastic sedimentation ability. This study provides theoretical support for simultaneously promoting the microalgae carbon fixation and microplastic sedimentation in the lake water environment and provides scientific basis for the protection and sustainable development of lake water ecosystem.


Subject(s)
Microalgae , Water Pollutants, Chemical , Microplastics , Plastics , Lakes/chemistry , Ecosystem , Water , Carbon Cycle , Water Pollutants, Chemical/analysis , Environmental Monitoring
19.
Sci Total Environ ; 948: 174655, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39004375

ABSTRACT

Microplastics (MPs) are widely present in terrestrial ecosystems. However, how MPs impact carbon (C) and nitrogen (N) cycling within plant-soil system is still poorly understood. Here, we conducted a meta-analysis utilizing 3338 paired observations from 180 publications to estimate the effects of MPs on plant growth (biomass, nitrogen content, nitrogen uptake and nitrogen use efficiency), change in soil C content (total carbon (TC), soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC)), C losses (carbon dioxide (CO2) and methane), soil N content (total nitrogen, dissolved organic nitrogen, microbial biomass nitrogen, total dissolve nitrogen, ammonium, nitrate (NO3--N) and nitrite) and nitrogen losses (nitrous oxide, ammonia (NH3) volatilization and N leaching) comprehensively. Results showed that although MPs significantly increased CO2 emissions by 25.7 %, they also increased TC, SOC, MBC, DOC and CO2 by 53.3 %, 25.4 %, 19.6 % and 24.7 %, respectively, and thus increased soil carbon sink capacity. However, MPs significantly decreased NO3--N and NH3 volatilization by 14.7 % and 43.3 %, respectively. Meanwhile, MPs significantly decreased plant aboveground biomass, whereas no significant changes were detected in plant belowground biomass and plant N content. The impacts of MPs on soil C, N and plant growth varied depending on MP types, sizes, concentrations, and experimental durations, in part influenced by initial soil properties. Overall, although MPs enhanced soil carbon sink capacity, they may pose a significant threat to future agricultural productivity.


Subject(s)
Microplastics , Nitrogen Cycle , Nitrogen , Soil Pollutants , Soil , Soil/chemistry , Soil Pollutants/analysis , Carbon Cycle , Carbon , Plants , Environmental Monitoring , Ecosystem
20.
Sci Total Environ ; 948: 174841, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39032748

ABSTRACT

This study demonstrates cellulose acetate (CA)-coated screen-printed carbon electrodes (SPCEs) for soil microbial activity detection. A capacitive sensor design utilizes a coated CA layer for effective insulation in electrolytes, eliminating the need for additional signal protection. Optimization involved comparing spin and dip coating methods, with a one-layer 10-second dip coating identified as the best balance between quality and yield. These CA/SPCEs exhibited remarkable stability over a month, suggesting their potential for long-term use in monitoring agricultural soils. Analysis of CA/SPCE profile and thickness provided insights into surface characteristics and the impact of the CA coating on electrode roughness. ATR-FTIR analysis, along with capacitive sensing, demonstrated superior sensitivity and precision for monitoring CA film degradation compared to mechanical gauges. Chemical degradation studies suggest CA's potential immunity in near-neutral environments, while enzymatic degradation investigations revealed dominance by enzymes, particularly in the initial stages. The CA/SPCE sensor responds to both enzymatic and chemical degradation, potentially serving as an indicator of total soil microbial activity. Soil experiments explored CA/SPCE with Cap-S for microbial activity sensing. Significant differences in the long-term degradation rate were observed in mycorrhizal fungi-enriched soil compared to controls, highlighting microbial influences. This study underscores the adaptability and versatility of this technology, particularly for assessing C-cycle microbial activity in agricultural fields.


Subject(s)
Cellulose , Soil Microbiology , Soil , Cellulose/analogs & derivatives , Soil/chemistry , Carbon Cycle , Environmental Monitoring/methods , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL