Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
Add more filters

Publication year range
1.
Cell Biol Int ; 48(6): 808-820, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38433534

ABSTRACT

Bone defects are characterized by a hypoxic environment, which affects bone tissue repair. However, the role of hypoxia in the repair of alveolar bone defects remains unclear. Human periodontal ligament stem cells (hPDLSCs) are high-quality seed cells for repairing alveolar bone defects, whose behavior changes under hypoxia. However, their mechanism of action is not known and needs to be elucidated. We hypothesized that hypoxia might be beneficial to alveolar bone defect repair and the osteogenic differentiation of hPDLSCs. To test this hypothesis, cobalt chloride (CoCl2) was used to create a hypoxic environment, both in vitro and in vivo. In vitro study, the best osteogenic effect was observed after 48 h of hypoxia in hPDLSCs, and the AKT/mammalian target of rapamycin/eukaryotic translation initiation factor 4e-binding protein 1 (AKT/mTOR/4EBP-1) signaling pathway was significantly upregulated. Inhibition of the AKT/mTOR/4EBP-1 signaling pathway decreased the osteogenic ability of hPDLSCs under hypoxia and hypoxia-inducible factor 1 alpha (HIF-1α) expression. The inhibition of HIF-1α also decreased the osteogenic capacity of hPDLSCs under hypoxia without significantly affecting the level of phosphorylation of AKT/mTOR/4EBP-1. In vitro study, Micro-CT and tissue staining results show better bone regeneration in hypoxic group than control group. These results suggested that hypoxia promoted alveolar bone defect repair and osteogenic differentiation of hPDLSCs, probably through AKT/mTOR/4EBP-1/HIF-1α signaling. These findings provided important insights into the regulatory mechanism of hypoxia in hPDLSCs and elucidated the effect of hypoxia on the healing of alveolar bone defects. This study highlighted the importance of physiological oxygen conditions for tissue engineering.


Subject(s)
Alveolar Bone Loss , Cell Differentiation , Cell Hypoxia , Cobalt , Hypoxia-Inducible Factor 1, alpha Subunit , Osteogenesis , Periodontal Ligament , Humans , Adaptor Proteins, Signal Transducing/drug effects , Adaptor Proteins, Signal Transducing/metabolism , Alveolar Bone Loss/metabolism , Bone Regeneration/drug effects , Cell Cycle Proteins/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Cobalt/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Osteogenesis/drug effects , Periodontal Ligament/metabolism , Periodontal Ligament/cytology , Phosphoproteins/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Stem Cells/metabolism , TOR Serine-Threonine Kinases/drug effects , TOR Serine-Threonine Kinases/metabolism
2.
Nanotechnology ; 35(36)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38834038

ABSTRACT

Give the emergence of drug resistance in bacteria resulting from antibiotic misuse, there is an urgent need for research and application of novel antibacterial approaches. In recent years, nanoparticles (NPs) have garnered significant attention due to their potential to disrupt bacteria cellular structure through loading drugs and special mechanisms, thus rendering them inactive. In this study, the surface of hollow polydopamine (HPDA) NPs was utilized for the growth of Prussian blue (PB), resulting in the formation of HPDA-PB NPs. Incorporation of Co element during the preparation process led to partial doping of PB with Co2+ions. The performance test results demonstrated that the HPDA-PB NPs exhibited superior photothermal conversion efficiency and peroxidase-like activity compared to PB NPs. HPDA-PB NPs have the ability to catalyze the formation of hydroxyl radicals from H2O2in a weakly acidic environment. Due to the tiny PB particles on the surface and the presence of Co2+doping, they have strong broad-spectrum antibacterial properties. Bothin vitroandin vivoevaluations confirm their efficacy against various bacterial strains, particularlyStaphylococcus aureus, and their potential to promote wound healing, making them a promising candidate for advanced wound care and antimicrobial applications.


Subject(s)
Anti-Bacterial Agents , Cobalt , Ferrocyanides , Indoles , Polymers , Staphylococcus aureus , Indoles/chemistry , Indoles/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polymers/chemistry , Polymers/pharmacology , Ferrocyanides/chemistry , Ferrocyanides/pharmacology , Cobalt/chemistry , Cobalt/pharmacology , Staphylococcus aureus/drug effects , Animals , Nanoparticles/chemistry , Microbial Sensitivity Tests , Mice , Wound Healing/drug effects
3.
Drug Dev Ind Pharm ; 50(6): 561-575, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38832870

ABSTRACT

INTRODUCTION: Breast cancer (BC) is the most common malignancy in women globally. Significant progress has been made in developing structural nanoparticles (NPs) and formulations for targeted smart drug delivery (SDD) of pharmaceuticals, improving the precision of tumor cell targeting in therapy. SIGNIFICANCE: Magnetic hyperthermia (MHT) treatment using magneto-liposomes (MLs) has emerged as a promising adjuvant cancer therapy. METHODS: CoFe2O4 magnetic NPs (MNPs) were conjugated with nanoliposomes to form MLs, and the anticancer drug quercetin (Que) was loaded into MLs, forming Que-MLs composites for antitumor approach. The aim was to prepare Que-MLs for DD systems (DDS) under an alternating magnetic field (AMF), termed chemotherapy/hyperthermia (chemo-HT) techniques. The encapsulation efficiency (EE), drug loading capacity (DL), and drug release (DR) of Que and Que-MLs were evaluated. RESULTS: The results confirmed successful Que-loading on the surface of MLs, with an average diameter of 38 nm and efficient encapsulation into MLs (69%). In vitro, experimental results on MCF-7 breast cells using MHT showed high cytotoxic effects of novel Que-MLs on MCF-7 cells. Various analyses, including cytotoxicity, apoptosis, cell migration, western blotting, fluorescence imaging, and cell membrane internalization, were conducted. The Acridine Orange-ethidium bromide double fluorescence test identified 35% early and 55% late apoptosis resulting from Que-MLs under the chemo-HT group. TEM results indicated MCF-7 cell membrane internalization and digestion of Que-MLs, suggesting the presence of early endosome-like vesicles on the cytoplasmic periphery. CONCLUSIONS: Que-MLs exhibited multi-modal chemo-HT effects, displaying high toxicity against MCF-7 BC cells and showing promise as a potent cytotoxic agent for BC chemotherapy.


Subject(s)
Apoptosis , Breast Neoplasms , DNA Damage , Hyperthermia, Induced , Liposomes , Quercetin , Humans , Quercetin/pharmacology , Quercetin/administration & dosage , Quercetin/chemistry , MCF-7 Cells , Apoptosis/drug effects , Hyperthermia, Induced/methods , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , DNA Damage/drug effects , Cobalt/chemistry , Cobalt/administration & dosage , Cobalt/pharmacology , Female , Ferric Compounds/chemistry , Drug Liberation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Drug Delivery Systems/methods , Magnetite Nanoparticles/chemistry , Cell Survival/drug effects , Magnetic Fields
4.
J Cell Mol Med ; 25(20): 9710-9723, 2021 10.
Article in English | MEDLINE | ID: mdl-34523215

ABSTRACT

Hypoxia-induced apoptosis of cementoblasts (OCCM-30) may be harmful to orthodontic treatment. Hypoxia-inducible factor 1-alpha (HIF-1α) mediates the biological effects during hypoxia. Little is known about the survival mechanism capable to counteract cementoblast apoptosis. We aimed to investigate the potential roles of HIF-1α, as well as the protein-protein interactions with ERK1/2, using an in-vitro model of chemical-mimicked hypoxia and adipokines. Here, OCCM-30 were co-stimulated with resistin, visfatin or ghrelin under CoCl2 -mimicked hypoxia. In-vitro investigations revealed that CoCl2 -induced hypoxia triggered activation of caspases, resulting in apoptosis dysfunction in cementoblasts. Resistin, visfatin and ghrelin promoted the phosphorylated ERK1/2 expression in OCCM-30 cells. Furthermore, these adipokines inhibited hypoxia-induced apoptosis at different degrees. These effects were reversed by pre-treatment with ERK inhibitor (FR180204). In cells treated with FR180204, HIF-1α expression was inhibited despite the presence of three adipokines. Using dominant-negative mutants of HIF-1α, we found that siHIF-1α negatively regulated the caspase-8, caspase-9 and caspase-3 gene expression. We concluded that HIF-1α acts as a bridge factor in lengthy hypoxia-induced apoptosis in an ERK1/2-dependent pathway. Gene expressions of the caspases-3, caspase-8 and caspase-9 were shown to be differentially regulated by adipokines (resistin, visfatin and ghrelin). Our study, therefore, provides evidence for the role of ERK1/2 and HIF-1α in the apoptotic response of OCCM-30 cells exposed to CoCl2 -mimicked hypoxia, providing potential new possibilities for molecular intervention in obese patients undergoing orthodontic treatment.


Subject(s)
Apoptosis/genetics , Caspases/metabolism , Dental Cementum/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia/genetics , Hypoxia/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Adipokines/metabolism , Adipokines/pharmacology , Animals , Apoptosis/drug effects , Cell Hypoxia/drug effects , Cell Hypoxia/genetics , Cobalt/pharmacology , Gene Expression , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Necrosis/drug therapy , Necrosis/genetics , Protein Kinase Inhibitors/pharmacology , Signal Transduction
5.
ScientificWorldJournal ; 2021: 6625216, 2021.
Article in English | MEDLINE | ID: mdl-33994882

ABSTRACT

Cobalt oxide nanoparticles (CoO NPs) were synthesized by the calcination method from the Co (II) complex which has the formula [Co(PVA)(P-ABA)(H2O)3], PVA = polyvinyl alcohol, and P-ABA = para-aminobenzoic acid. The calcination temperature was 550°C, and the products were characterized by element analysis, thermal analyses (TGA and DTA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV-Vis spectra, and scanning electron microscopy (SEM) techniques. The kinetic and thermodynamic parameters (∆H ∗ , ∆G ∗ , and ∆S ∗ ) for the cobalt (II) complex are calculated. The charges been carried by the atoms cause dipole moment 10.53 and 3.84 debye and total energy 11.04 × 102 and 24.80 × 102 k Cal mol-1 for the Co (II) complex and cobalt oxide, respectively. X-ray diffraction confirmed that the resulting oxide was pure single-crystalline CoO nanoparticles. Scanning electron microscopy indicating that the crystallite size of cobalt oxide nanocrystals was in the range of 36-54 nm. Finally, the antimicrobial activity of cobalt oxide nanoparticles was evaluated using four bacterial strains and one fungal strain. Two strains of Gram-positive cocci (Staphylococcus aureus and Enterococcus faecalis), two strains of Gram-negative bacilli (Escherichia coli and Pseudomonas aeruginosa), and one strain of yeast such as fungi (Candida albicans) were used in this study.


Subject(s)
4-Aminobenzoic Acid/chemistry , Anti-Bacterial Agents/chemical synthesis , Metal Nanoparticles/chemistry , Oxides/chemical synthesis , Polyvinyl Alcohol/chemistry , Anti-Bacterial Agents/pharmacology , Candida albicans/drug effects , Candida albicans/growth & development , Cobalt/pharmacology , Enterococcus faecalis/drug effects , Enterococcus faecalis/growth & development , Escherichia coli/drug effects , Escherichia coli/growth & development , Kinetics , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Oxides/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Thermodynamics
6.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884526

ABSTRACT

COVID-19 pandemic and associated supply-chain disruptions emphasise the requirement for antimicrobial materials for on-demand manufacturing. Besides aerosol transmission, SARS-CoV-2 is also propagated through contact with virus-contaminated surfaces. As such, the development of effective biofunctional materials that can inactivate SARS-CoV-2 is critical for pandemic preparedness. Such materials will enable the rational development of antiviral devices with prolonged serviceability, reducing the environmental burden of disposable alternatives. This research reveals the novel use of Laser Powder Bed Fusion (LPBF) to 3D print porous Cobalt-Chromium-Molybdenum (Co-Cr-Mo) superalloy with potent antiviral activity (100% viral inactivation in 30 min). The porous material was rationally conceived using a multi-objective surrogate model featuring track thickness (tt) and pore diameter (ϕd) as responses. The regression analysis found the most significant parameters for Co-Cr-Mo track formation to be the interaction effects of scanning rate (Vs) and laser power (Pl) in the order PlVs>Vs>Pl. Contrastively, the pore diameter was found to be primarily driven by the hatch spacing (Sh). The study is the first to demonstrate the superior antiviral properties of 3D printed Co-Cr-Mo superalloy against an enveloped virus used as biosafe viral model of SARS-CoV-2. The material significantly outperforms the viral inactivation time of other broadly used antiviral metals such as copper and silver, as the material's viral inactivation time was from 5 h to 30 min. As such, the study goes beyond the current state-of-the-art in antiviral alloys to provide extra protection to combat the SARS-CoV-2 viral spread. The evolving nature of the COVID-19 pandemic brings new and unpredictable challenges where on-demand 3D printing of antiviral materials can achieve rapid solutions while reducing the environmental impact of disposable devices.


Subject(s)
Antiviral Agents/pharmacology , Chromium/pharmacology , Cobalt/pharmacology , Molybdenum/pharmacology , Printing, Three-Dimensional , Alloys , COVID-19 , Humans , Porosity , SARS-CoV-2/drug effects , Surface Properties , Virus Inactivation/drug effects
7.
Int J Mol Sci ; 22(13)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34281198

ABSTRACT

Reconstruction of nerve defects is a clinical challenge. Autologous nerve grafts as the gold standard treatment may result in an incomplete restoration of extremity function. Biosynthetic nerve conduits are studied widely, but still have limitations. Here, we reconstructed a 10 mm sciatic nerve defect in healthy rats and analyzed nerve regeneration in poly (ε-caprolactone) (PCL) conduits longitudinally divided by gold (Au) and gold-cobalt oxide (AuCoO) nanoparticles embedded in poly-propylene poly-ethylene glycol (PPEG) membranes (AuPPEG or AuCoOPPEG) and compared it with unmodified PPEG-membrane and hollow PCL conduits. After 21 days, we detected significantly better axonal outgrowth, together with higher numbers of activated Schwann cells (ATF3-labelled) and higher HSP27 expression, in reconstructed sciatic nerve and in corresponding dorsal root ganglia (DRG) in the AuPPEG and AuCoOPPEG groups; whereas the number of apoptotic Schwann cells (cleaved caspase 3-labelled) was significantly lower. Furthermore, numbers of activated and apoptotic Schwann cells in the regenerative matrix correlated with axonal outgrowth, whereas HSP27 expression in the regenerative matrix and in DRGs did not show any correlation with axonal outgrowth. We conclude that gold and cobalt-oxide nanoparticle modified membranes in conduits improve axonal outgrowth and increase the regenerative performance of conduits after nerve reconstruction.


Subject(s)
Gold/administration & dosage , Metal Nanoparticles/administration & dosage , Nerve Regeneration/drug effects , Sciatic Nerve/drug effects , Animals , Cobalt/pharmacology , Female , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Gold/pharmacology , Metal Nanoparticles/chemistry , Nerve Regeneration/physiology , Oxides/pharmacology , Polyesters/chemistry , Polyesters/pharmacology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Polypropylenes/chemistry , Polypropylenes/pharmacology , Prostheses and Implants , Rats , Rats, Wistar , Schwann Cells/drug effects , Schwann Cells/metabolism , Sciatic Nerve/metabolism
8.
Int J Mol Sci ; 21(22)2020 Nov 22.
Article in English | MEDLINE | ID: mdl-33266398

ABSTRACT

Diabetic foot ulcers (DFUs) caused by diabetes are prone to serious and persistent infections. If not treated properly, it will cause tissue necrosis or septicemia due to peripheral blood vessel embolism. Therefore, it is an urgent challenge to accelerate wound healing and reduce the risk of bacterial infection in patients. In clinical practice, DFUs mostly use hydrogel dressing to cover the surface of the affected area as an auxiliary treatment. Polyvinyl alcohol (PVA) is a hydrophilic hydrogel polymer widely used in dressings, drug delivery, and medical applications. However, due to its weak bioactivity and antibacterial ability, leads to limited application. Filler adding is a useful way to enhance the biocompatibility of PVA. In our study, cobalt-substituted hydroxyapatite (CoHA) powder was prepared by the electrochemically-deposited method. PVA and PVA-CoHA nanocomposite were prepared by the solvent casting method. The bioactivity of the PVA and composite was evaluated by immersed in simulated body fluid for 7 days. In addition, L929 cells and E. coli were used to evaluate the cytotoxicity and antibacterial tests of PVA and PVA-CoHA nanocomposite. The results show that the addition of CoHA increases the mechanical properties and biological activity of PVA. Biocompatibility evaluation showed no significant cytotoxicity of PVA-CoHA composite. In addition, a small amount of cobalt ion was released to the culture medium from the nanocomposite in the cell culture period and enhanced cell growth. The addition of CoHA also confirmed that it could inhibit the growth of E. coli. PVA-CoHA composite may have potential applications in diabetic trauma healing and wound dressing.


Subject(s)
Bandages , Cobalt/pharmacology , Diabetic Foot/therapy , Nanocomposites/chemistry , Polyvinyl Alcohol/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Cell Line , Cobalt/chemistry , Diabetic Foot/physiopathology , Durapatite , Escherichia coli/drug effects , Hydrogels , Mice , Polyvinyl Alcohol/chemistry , Wound Healing
9.
Int J Mol Sci ; 21(11)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32531897

ABSTRACT

Angiogenesis is critical for local tumor growth. This study aimed to develop a three-dimensional two-layer co-culture system to investigate effects of cancer cells on the growth of endothelial cells (ECs). Poly(ε-caprolactone) (PCL) nanofibrous membranes were generated via electrospinning of PCL in chloroform (C-PCL-M) and chloroform and dimethylformamide (C/DMF-PCL-M). We assembled a two-layer co-culture system using C-PCL-M and C/DMF-PCL-M for EC growth in the upper layer with co-cultured cancer cells in the lower layer. In the absence of vascular endothelial growth factor (VEGF), growth of bEND.3 ECs decreased on C/DMF-PCL-M but not on C-PCL-M with time. Growth of bEND.3 cells on C/DMF-PCL-M was enhanced through co-culturing of CT26 cancer cells and enhanced growth of bEND.3 cells was abrogated with anti-VEGF antibodies and sorafenib. However, EA.hy926 ECs displayed steady growth and proliferation on C/DMF-PCL-M, and their growth was not further increased through co-culturing of cancer cells. Moreover, chemical hypoxia in CT26 cancer cells upon treatment with CoCl2 enhanced the growth of co-cultured bEND.3 cells in the two-layer system. Thus, EC growth on the nanofibrous scaffold is dependent on the types of ECs and composition of nanofibers and this co-culture system can be used to analyze EC growth induced by cancer cells.


Subject(s)
Coculture Techniques/instrumentation , Coculture Techniques/methods , Colonic Neoplasms/pathology , Endothelial Cells/cytology , Nanofibers/chemistry , Animals , Cell Hypoxia/drug effects , Cell Proliferation , Chloroform/chemistry , Cobalt/pharmacology , Colonic Neoplasms/blood supply , Dimethylformamide/chemistry , Endothelial Cells/drug effects , Endothelial Cells/pathology , Hep G2 Cells , Human Umbilical Vein Endothelial Cells , Humans , Membranes, Artificial , Mice , Neovascularization, Pathologic , Polyesters/chemistry , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology
10.
Nanomedicine ; 21: 102047, 2019 10.
Article in English | MEDLINE | ID: mdl-31271877

ABSTRACT

Drug delivery nanocarriers based on magnetic nanoparticles have attracted increasing attention due to their potential applications in magnetic resonance imaging, photodynamic therapy and targeted drug delivery. Herein, we have fabricated the multifunctional co-loaded magnetic nanocapsules (MNCPs) using a microemulsion process for enhancing targeted magnetic resonance imaging and in vivo photodynamic therapy. MNCPs were synthesized by co-loading Co@Mn magnetic nanoparticles and chlorin e6 into the matrix of an amphiphilic polymer, and further surface covalently coupled with target molecules. This work demonstrates that MNCPs have uniform sizes (dc: ~150 nm), favorable biocompatibility, long-term stability, excellent T2 relaxation values, and high drug loading efficiency. These advantages offer MNCPs successfully applied in targeted magnetic resonance imaging, real-time fluorescent labeling, and photodynamic therapy. The research results will contribute to rationally design novel nano-platform and provide a promising approach for further clinical integration of diagnosis and treatment in the near future.


Subject(s)
Biocompatible Materials/pharmacology , Drug Delivery Systems , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry , Biocompatible Materials/chemistry , Chlorophyllides , Cobalt/chemistry , Cobalt/pharmacology , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Humans , Manganese/chemistry , Manganese/pharmacology , Photochemotherapy/methods , Porphyrins/chemistry , Porphyrins/pharmacology
11.
Am J Physiol Cell Physiol ; 315(3): C389-C397, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29768044

ABSTRACT

Oxygen deficiency is associated with various oral diseases, including chronic periodontitis, age-related alveolar bone loss, and mechanical stress-linked cell injury from orthodontic appliances. Nevertheless, our understanding of the impact of hypoxia on periodontal tissues and its biochemical mechanism is still rudimentary. The purpose of this research was to elucidate the effects of hypoxia on the apoptosis of human periodontal ligament stem cells (PDLSCs) in vitro and the underlying mechanism. Herein, we showed that cobalt chloride (CoCl2) triggered cell dysfunction in human PDLSCs in a concentration-dependent manner and resulted in cell apoptosis and oxidative stress overproduction and accumulation in PDLSCs. In addition, CoCl2 promoted mitochondrial fission in PDLSCs. Importantly, CoCl2 increased the expression of dynamin-related protein 1 (Drp1), the major regulator in mitochondrial fission, in PDLSCs. Mitochondrial division inhibitor-1, pharmacological inhibition of Drp1, not only inhibited mitochondrial fission but also protected against CoCl2-induced PDLSC dysfunction, as shown by increased mitochondrial membrane potential, increased ATP level, reduced reactive oxygen species (ROS) level, and decreased apoptosis. Furthermore, N-acety-l-cysteine, a pharmacological inhibitor of ROS, also abolished CoCl2-induced expression of Drp1 and protected against CoCl2-induced PDLSC dysfunction, as shown by restored mitochondrial membrane potential, ATP level, inhibited mitochondrial fission, and decreased apoptosis. Collectively, our data provide new insights into the role of the ROS-Drp1-dependent mitochondrial pathway in CoCl2-induced apoptosis in PDLSCs, indicating that ROS and Drp1 are promising therapeutic targets for the treatment of CoCl2-induced PDLSC dysfunction.


Subject(s)
Apoptosis/drug effects , Cobalt/pharmacology , GTP Phosphohydrolases/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondrial Dynamics/drug effects , Mitochondrial Proteins/metabolism , Periodontal Ligament/drug effects , Reactive Oxygen Species/metabolism , Stem Cells/drug effects , Adolescent , Adult , Cells, Cultured , Child , Dynamins , Female , Humans , Male , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Periodontal Ligament/metabolism , Signal Transduction/drug effects , Stem Cells/metabolism , Young Adult
12.
J Cell Biochem ; 119(2): 1992-2002, 2018 02.
Article in English | MEDLINE | ID: mdl-28817179

ABSTRACT

Human dental pulp exposed to hypoxic conditions induces cell death accompanied by autophagy. However, the role of hypoxia-induced autophagy in human dental pulp cells (HDPCs) is unclear. The present study aimed to investigate the role of autophagy in hypoxia-induced apoptosis of HDPCs. Cobalt chloride (CoCl2 ) treated HDPCs, to mimic hypoxic conditions, decreased cell viability. Also, apoptosis-related signal molecules, cleaved caspase-3 and PARP levels, were enhanced in CoCl2 -treated HDPCs. HDPCs exposed to CoCl2 also promoted autophagy, showing upregulated p62 and microtubule-associated protein 1 light chain 3 (LC3)-II levels, typical autophagic markers, and increased acidic autophagolysosomal vacuoles. Autophagy inhibition by 3 methyladenine (3MA) or RNA interference of LC3B resulted in increased levels of cleaved PARP and caspase-3, and the release of cytochrome c from mitochondria into cytosol in the CoCl2 -treated HDPCs. However, autophagy activation by rapamycin enhanced the p62 and LC3-II levels, whereas it reduced PARP and caspase-3 cleavage induced by CoCl2. These results revealed that CoCl2 -activated autophagy showed survival effects against CoCl2 -induced apoptosis in the HDPCs. CoCl2 upregulated HIF-1α and decreased the phosphorylation of mTOR/p70S6K. HIF-1α inhibitor, YC-1 decreased p62 and LC3-II levels, whereas it augmented PARP and caspase-3 cleavage in response to CoCl2 . Also, YC-1 enhanced the phosphorylation of mTOR and p70S6K suppressed by CoCl2 , demonstrating that CoCl2 -induced autophagy via mTOR/p70S6K is mediated by HIF-1α. Taken together, these finding suggest that CoCl2 -induced autophagy mediated by the mTOR/p70S6K pathway plays a protective role against hypoxic stress in HDPCs.


Subject(s)
Cobalt/pharmacology , Dental Pulp/cytology , Sirolimus/pharmacology , Stress, Physiological/drug effects , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Autophagy , Autophagy-Related Proteins/metabolism , Cell Hypoxia , Cell Survival/drug effects , Dental Pulp/drug effects , Dental Pulp/metabolism , Humans
13.
J Periodontal Res ; 52(1): 21-32, 2017 Feb.
Article in English | MEDLINE | ID: mdl-26987886

ABSTRACT

BACKGROUND AND OBJECTIVE: Peri-implantitis is a destructive inflammatory process characterized by destruction of the implant-supporting bone. Inflammasomes are large intracellular multiprotein complexes that play a central role in innate immunity by activating the release of proinflammatory cytokines. Although inflammasome activation has previously been linked to periodontal inflammation, there is still no information on a potential association with peri-implantitis. The aim of this study was to examine cytotoxic and proinflammatory effects, including inflammasome activation, of metals used in dental implants, in an in vitro model, as well as from clinical tissue samples. MATERIAL AND METHODS: Human macrophages were exposed to different metals [titanium (Ti), cobalt, chromium and molybdenum] in a cell-culture assay. Cytotoxicity was determined using the neutral red uptake assay. Cytokine secretion was quantified using an ELISA, and the expression of genes of various inflammasome components was analysed using quantitative PCR. In addition, the concentrations of interleukin-1ß (IL-1ß) and Ti in mucosal tissue samples taken in the vicinity of dental implants were determined using ELISA and inductively coupled plasma mass spectrometry, respectively. RESULTS: Ti ions in physiological solutions stimulated inflammasome activation in human macrophages and consequently IL-1ß release. This effect was further enhanced by macrophages that have been exposed to lipopolysaccharides. The proinflammatory activation caused by Ti ions disappeared after filtration (0.22 µm), which indicates an effect of particles. Ti ions alone did not stimulate transcription of the inflammasome components. The Ti levels of tissue samples obtained in the vicinity of Ti implants were sufficiently high (≥ 40 µm) to stimulate secretion of IL-1ß from human macrophages in vitro. CONCLUSION: Ti ions form particles that act as secondary stimuli for a proinflammatory reaction.


Subject(s)
Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Titanium/pharmacology , Cells, Cultured , Chromium/adverse effects , Chromium/metabolism , Chromium/pharmacology , Cobalt/adverse effects , Cobalt/metabolism , Cobalt/pharmacology , Enzyme-Linked Immunosorbent Assay , Humans , Macrophages/metabolism , Mass Spectrometry , Molybdenum/adverse effects , Molybdenum/metabolism , Molybdenum/pharmacology , Real-Time Polymerase Chain Reaction , Titanium/adverse effects , Titanium/metabolism
14.
J Nanosci Nanotechnol ; 16(2): 1420-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27433598

ABSTRACT

In the field of oral implantology the loss of bone tissue prevents adequate patient care, and calls for the use of synthetic biomaterials with properties that resemble natural bone. Special attention is paid to the risk of infection after the implantation of these materials. Studies have suggested that some nanocontructs containing metal ions have antimicrobial properties. The aim of this study was to examine the antimicrobial and hemolytic activity of cobalt-substituted hydroxyapatite nanoparticles, compared to hydroxyapatite and hydroxyapatite/poly-lactide-co-glycolide. The antibacterial effects of these powders were tested against two pathogenic bacterial strains: Escherichia coi (ATCC 25922) and Staphylococcus aureus (ATCC 25923), using the disc diffusion method and the quantitative antimicrobial test in a liquid medium. The quantitative antimicrobial test showed that all of the tested biomaterials have some antibacterial properties. The effects of both tests were more prominent in case of S. aureus than in E coli. A higher percentage of cobalt in the crystal structure of cobalt-substituted hydroxyapatite nanoparticles led to an increased antimicrobial activity. All of the presented biomaterial samples were found to be non-hemolytic. Having in mind that the tested of cobalt-substituted hydroxyapatite (Ca/Co-HAp) material in given concentrations shows good hemocompatibility and antimicrobial effects, along with its previously studied biological properties, the conclusion can be reached that it is a potential candidate that could substitute calcium hydroxyapatite as the material of choice for use in bone tissue engineering and clinical practices in orthopedic, oral and maxillofacial surgery.


Subject(s)
Anti-Infective Agents , Bone Substitutes , Durapatite , Escherichia coli/growth & development , Nanostructures/chemistry , Staphylococcus aureus/growth & development , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Cobalt/chemistry , Cobalt/pharmacology , Durapatite/chemistry , Durapatite/pharmacology
15.
Luminescence ; 31(2): 533-543, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26278128

ABSTRACT

The polymer-cobalt(III) complexes, [Co(bpy)(dien)BPEI]Cl3 · 4H2O (bpy = 2,2'-bipyridine, dien = diethylentriamine, BPEI = branched polyethyleneimine) were synthesized and characterized. The interaction of these complexes with human serum albumin (HSA) and bovine serum albumin (BSA) was investigated under physiological conditions using various physico-chemical techniques. The results reveal that the fluorescence quenching of serum albumins by polymer-cobalt(III) complexes took place through static quenching. The binding of these complexes changed the molecular conformation of the protein considerably. The polymer-cobalt(III) complex with x = 0.365 shows antimicrobial activity against several human pathogens. This complex also induces cytotoxicity against MCF-7 through apoptotic induction. However, further studies are needed to decipher the molecular mode of action of polymer-cobalt(III) complex and for its possible utilization in anticancer therapy.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Bacteria/drug effects , Fungi/drug effects , Organometallic Compounds/pharmacology , Serum Albumin/chemistry , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Apoptosis/drug effects , Binding Sites , Cattle , Cell Proliferation/drug effects , Cobalt/chemistry , Cobalt/pharmacology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells , Microbial Sensitivity Tests , Molecular Structure , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Polymers/chemistry , Polymers/pharmacology , Structure-Activity Relationship
16.
J Trace Elem Med Biol ; 82: 127341, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38091868

ABSTRACT

Given the importance of the endothelial cell phenotype in dental peri-implant healing processes, the aim of this study was to better assess the involvement of endothelial cells responding to cobalt-chromium (CoCr)-enriched medium. Biologically, cobalt is widely used molecule to induce chemical experimental hypoxia because it stabilizes hypoxia inducible factors (HIF1α). The aplication of hypoxia models provides better experimental condition to allow its impact on cellular metabolism, by looking for biochemical and molecular issues. Thus, this study looks for understaing whether CoCr-based materials are able to modulate endothelial cells considering the hypoxic effect prmoted by cobalt. Firstly, our data shows there is a siginificant effect on endothelial phenotype by modulating the expression of VEGF and eNOS genes, whith low requirement of genes related with proteasome intracellular complex. Importantly, the data were validated using classical chemical modulators of hypoxia signaling [chrysin (5,7-dihydroxyflavone) and Dimethyloxalylglycine (DMOG)] in functional assays. Altogether, these data validate the hypothesis that hipoxya is important to maintain the phenotype of endothelial cells, and it is properly interesting during the tissue regeneration surrounding implants and so compromising osseointegration process. Finally, it is important to mention that the cobalt released from CoCr devices might contribute with an sufficient microenvironment surrounding implanted devices and it paviments new roads looking for more bioactive surfaces of implantable materials in human health.


Subject(s)
Chromium , Endothelial Cells , Humans , Chromium/chemistry , Cobalt/pharmacology , Cobalt/chemistry , Signal Transduction
17.
ACS Biomater Sci Eng ; 10(4): 2074-2087, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38111288

ABSTRACT

In search of materials with superior capability of light-to-heat (photothermal) conversion, biocompatibility, and confinement of active photothermal materials within the cells, novel magnetic MXene-based nanocomposites are found to possess all of these criteria. The CoF@Ti3C2 composite is fabricated by a simple two-step method, including an exfoliation strategy followed by sonochemical method. MXene composite has been modified with polyvinylpyrrolidone (PVP) to improve the stability in physiological conditions. The synthesized composite was characterized with multiple analytical tools. In vitro photothermal conversion efficiency of composite was determined by the time constant method and achieved η = 34.2% with an NIR 808 nm laser. In vitro, cytotoxicity studies conducted on human malignant melanoma (Ht144) and cells validated the photothermal property of the CoF@Ti3C2-PVP composite in the presence of an NIR laser (808 nm, 1.0 W cm-2), with significantly increased cytotoxicity. Calculated IC50 values were 86 µg/mL with laser, compared to 226 µg/mL without the presence of NIR laser. Microscopic results demonstrated increased apoptosis in the presence of NIR laser. Additionally, hemolysis assay confirmed biocompatibility of CoF@Ti3C2-PVP composite for intravenous applications at the IC50 concentration. The research described in this work expands the potential applications of MXene-based nanoplatforms in the biomedical field, particularly in photothermal therapy (PTT). Furthermore, the addition of cobalt ferrite serves as a magnetic nanocomposite, which eventually helps to confine therapeutic photothermal materials inside the cells, provides enhanced photothermal conversion efficiency, and creates externally controlled theranostic nanoplatforms for cancer therapy.


Subject(s)
Ferric Compounds , Nitrites , Titanium , Transition Elements , Humans , Titanium/chemistry , Ferric Compounds/pharmacology , Cobalt/pharmacology , Povidone
18.
Biomed Mater ; 19(6)2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39303743

ABSTRACT

Adequate simulation mimicking a tissue's native environment is one of the elemental premises in tissue engineering. Although various attempts have been made to induce human mesenchymal stem cells (hMSC) into an osteogenic pathway, they are still far from widespread clinical application. Most strategies focus primarily on providing a specific type of cue, inadequately replicating the complexity of the bone microenvironment. An alternative multifunctional platform for hMSC osteogenic differentiation has been produced. It is based on poly(vinylidene fluoride) (PVDF) and cobalt ferrites magnetoelectric microspheres, functionalized with collagen and gelatin, and packed in a 3D arrangement. This platform is capable of performing mechanical stimulation of piezoelectric PVDF, mimicking the bones electromechanical biophysical cues. Surface functionalization with extracellular matrix biomolecules and osteogenic medium complete this all-round approach. hMSC were cultured in osteogenic inducing conditions and tested for proliferation, surface biomarkers, and gene expression to evaluate their osteogenic commitment.


Subject(s)
Cell Differentiation , Cell Proliferation , Mesenchymal Stem Cells , Osteogenesis , Polyvinyls , Tissue Engineering , Humans , Mesenchymal Stem Cells/cytology , Tissue Engineering/methods , Polyvinyls/chemistry , Cells, Cultured , Tissue Scaffolds/chemistry , Biomimetic Materials/chemistry , Gelatin/chemistry , Biomimetics , Extracellular Matrix/metabolism , Collagen/chemistry , Microspheres , Cobalt/chemistry , Cobalt/pharmacology , Cellular Microenvironment , Fluorocarbon Polymers
19.
Int J Nanomedicine ; 19: 4163-4180, 2024.
Article in English | MEDLINE | ID: mdl-38751660

ABSTRACT

Purpose: The study aimed to address the non-specific toxicity of cytotoxins (CTX) in liver cancer treatment and explore their combined application with the photosensitizer Ce6, co-loaded into carbonized Zn/Co bimetallic organic frameworks. The goal was to achieve controlled CTX release and synergistic photodynamic therapy, with a focus on evaluating anti-tumor activity against human liver cancer cell lines (Hep G2). Methods: Purified cobra cytotoxin (CTX) and photosensitizer Ce6 were co-loaded into carbonized Zn/Co bimetallic organic frameworks, resulting in RGD-PDA@C-ZIF@(CTX+Ce6). The formulation was designed with surface-functionalization using polydopamine and tumor-penetrating peptide RGD. This approach aimed to facilitate controlled CTX release and enhance the synergistic effect of photodynamic therapy. The accumulation of RGD-PDA@C-ZIF@(CTX+Ce6) at tumor sites was achieved through RGD's active targeting and the enhanced permeability and retention (EPR) effect. In the acidic tumor microenvironment, the porous structure of the metal-organic framework disintegrated, releasing CTX and Ce6 into tumor cells. Results: Experiments demonstrated that RGD-PDA@C-ZIF@(CTX+Ce6) nanoparticles, combined with near-infrared laser irradiation, exhibited optimal anti-tumor effects against human liver cancer cells. The formulation showcased heightened anti-tumor activity without discernible systemic toxicity. Conclusion: The study underscores the potential of utilizing metal-organic frameworks as an efficient nanoplatform for co-loading cytotoxins and photodynamic therapy in liver cancer treatment. The developed formulation, RGD-PDA@C-ZIF@(CTX+Ce6), offers a promising avenue for advancing the clinical application of cytotoxins in oncology, providing a solid theoretical foundation for future research and development.


Subject(s)
Indoles , Liver Neoplasms , Metal-Organic Frameworks , Photochemotherapy , Photosensitizing Agents , Zinc , Humans , Photochemotherapy/methods , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Liver Neoplasms/drug therapy , Zinc/chemistry , Zinc/pharmacology , Indoles/chemistry , Indoles/pharmacology , Indoles/administration & dosage , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/administration & dosage , Animals , Hep G2 Cells , Cobalt/chemistry , Cobalt/pharmacology , Oligopeptides/chemistry , Oligopeptides/pharmacology , Oligopeptides/pharmacokinetics , Polymers/chemistry , Mice , Cytotoxins/chemistry , Cytotoxins/pharmacology , Cytotoxins/pharmacokinetics , Mice, Nude , Mice, Inbred BALB C , Cell Survival/drug effects
20.
IET Nanobiotechnol ; 2024: 8929168, 2024.
Article in English | MEDLINE | ID: mdl-39144409

ABSTRACT

Prostate cancer is the second most frequent type of cancer death in men. This study refers to the novel hyperthermia application of poloxamer-coated cobalt ferrite as a new approach for thermal eradication of DU-145 human prostate cancerous cells under a radio frequency magnetic field (RF-MF). The hydrothermal method was applied for the synthesis of cobalt ferrite nanoparticles. Then, the structure, size, and morphology of nanoparticle were characterized. The cytotoxicity of the synthesized nanoparticles and RF-MF exposure on DU-145 prostate cancer cells was investigated separately or in combination with colony formation methods and MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay. Transmission electron microscopy (TEM) confirmed the spherical morphology of nanoparticles with a size of 5.5 ± 2.6 nm. The temperature of cells treated with nanoparticles under RF-MF reached 42.73 ± 0.2°C after 15 min. RF-MF treatment or nanoparticles have not affected cell viability significantly. However, the combination of them eradicated 53% ± 4% of cancerous cells. In-vitro hyperthermia was performed on human prostate cancer cells (DU-145) with cobalt ferrite nanoparticles at specific concentrations that demonstrated a decrease in survival fraction based on colony formation assay compared to cells that were treated alone with nanoparticles or with RF-MF.


Subject(s)
Cell Proliferation , Cell Survival , Cobalt , Ferric Compounds , Poloxamer , Prostatic Neoplasms , Humans , Male , Cobalt/chemistry , Cobalt/pharmacology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Poloxamer/chemistry , Poloxamer/pharmacology , Cell Line, Tumor , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Cell Survival/drug effects , Cell Proliferation/drug effects , Hyperthermia, Induced/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Metal Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL