Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.309
Filter
Add more filters

Publication year range
1.
Microb Pathog ; 189: 106574, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354990

ABSTRACT

Antibiotics play an important role in the treatment of infectious diseases. Long-term overuse or misuse of antibiotics, however, has triggered the global crisis of antibiotic resistance, bringing challenges to treating clinical infection. Bacteriophages (phages) are the viruses infecting bacterial cells. Due to high host specificity, high bactericidal activity, and good biosafety, phages have been used as natural alternative antibacterial agents to fight against multiple drug-resistant bacteria. Enterococcus faecalis is the main species detected in secondary persistent infection caused by failure of root canal therapy. Due to strong tolerance and the formation of biofilm, E. faecalis can survive the changes in pH, temperature, and osmotic pressure in the mouth and thus is one of the main causes of periapical lesions. This paper summarizes the advantages of phage therapy, its applications in treating oral diseases caused by E. faecalis infections, and the challenges it faces. It offers a new perspective on phage therapy in oral diseases.


Subject(s)
Bacterial Infections , Bacteriophages , Mouth Diseases , Phage Therapy , Humans , Enterococcus faecalis , Anti-Bacterial Agents/therapeutic use
2.
Microb Pathog ; 194: 106844, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39128644

ABSTRACT

This study investigated the effect of pumpkin powder (2 %, 4 %, and 6 %) and Enterococcus faecium and Enterococcus faecalis probiotics on the physicochemical, microbiological, and sensory properties of yogurt samples during 28 days of storage at 4 °C. The prebiotic effect of pumpkin powder (Cucurbita pepo) and the probiotic effect of Enterococcus faecium and E. faecalis were determined. Adding pumpkin powder to yogurt did not significantly alter the pH, acidity, fat, protein, and ash content (p > 0.05). Water holding was not changed during the storage time in the samples of probiotic yogurts, but as the pumpkin powder content increased, the water holding capacity also increased (p < 0.05). This situation did lead to a reduction in syneresis (p < 0.05). The lowest gumminess value at the end of storage was found in the D2 sample (p < 0.05), and the highest adhesiveness value was found in the D4 sample (p < 0.05). Furthermore, throughout the 28-day storage period, E. faecium and E. faecalis maintained a live cell count of ≥6 log CFU g-1 in the probiotic product. As a result of the statistical evaluation, there was a decrease in E. faecium in the D4, S2, and S4 samples, and then it increased again (p > 0.05) during the storage time. As a result of the statistical evaluation, it was determined that the smell, consistency in the spoon, consistency in the mouth, flavor, and acidity changes during the storage were not substantial (p > 0.05). In conclusion, it was found that pumpkin, a byproduct of the pumpkin seed industry, has the potential to act as a prebiotic and improve the properties of dairy products. Additionally, the study suggests that E. faecium and E. faecalis strains could be suitable for probiotic yogurts.


Subject(s)
Cucurbita , Enterococcus faecalis , Enterococcus faecium , Prebiotics , Probiotics , Yogurt , Enterococcus faecium/growth & development , Cucurbita/microbiology , Enterococcus faecalis/growth & development , Enterococcus faecalis/drug effects , Yogurt/microbiology , Hydrogen-Ion Concentration , Food Microbiology , Food Storage , Colony Count, Microbial , Taste
3.
Microb Pathog ; 193: 106762, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936638

ABSTRACT

Enterococcus faecalis is a troublesome nosocomial pathogen that acquired resistance to most available antimicrobial agents. Antivirulence agents represent an unconventional treatment approach. Here, transcription factor decoy (TFD)-loaded cationic liposomes (TLL) were developed as an inhibitor of the Fsr quorum-sensing system and its associated virulence traits, in E. faecalis. The consensus sequence of the FsrA binding site was found conserved among 651 E. faecalis annotated genomes. The TFD was synthesized as an 82 bp DNA duplex, containing the conserved binding sequence, and loaded onto cationic liposomes. The optimum loading capacity, mean particle size, and zeta potential of the TLL were characterized. The developed TLL lacked any effect on E. faecalis growth and significantly inhibited the in vitro production of the proteolytic enzymes controlled by the Fsr system; gelatinase and serine protease, in a concentration-dependent manner. This inhibition was accompanied by a significant reduction in the transcription levels of FsrA-regulated genes (fsrB, gelE, and sprE). The developed TLL were safe as evidenced by the nonhemolytic effect on human RBCs and the negligible cytotoxicity on human skin fibroblast cells. Moreover, in the larvae infection model, TLL displayed a significant abolish in the mortality rates of Galleria mellonella larvae infected with E. faecalis. In conclusion, the developed TLL offer a new safe strategy for combating E. faecalis infection through the inhibition of quorum-sensing-mediated virulence; providing a platform for the development of similar agents to combat many other pathogens.


Subject(s)
Bacterial Proteins , Enterococcus faecalis , Gram-Positive Bacterial Infections , Quorum Sensing , Enterococcus faecalis/drug effects , Enterococcus faecalis/genetics , Animals , Virulence/drug effects , Humans , Quorum Sensing/drug effects , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/drug therapy , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Liposomes , Larva/microbiology , Transcription Factors/metabolism , Transcription Factors/genetics , Virulence Factors/genetics , Gelatinases/metabolism , Gelatinases/antagonists & inhibitors , Moths/microbiology , Erythrocytes/drug effects , Disease Models, Animal , Serine Proteases/metabolism , Serine Proteases/genetics , Gene Expression Regulation, Bacterial/drug effects , Nanoparticles/chemistry , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
4.
Appl Microbiol Biotechnol ; 108(1): 336, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761182

ABSTRACT

To investigate the cell-cell interactions of intergeneric bacterial species, the study detected the survival of Enterococcus faecalis (Ef) under monospecies or coaggregation state with Fusobacterium nucleatum subsp. polymorphum (Fnp) in environmental stress. Ef and Fnp infected the human macrophages with different forms (Ef and Fnp monospecies, Ef-Fnp coaggregates, Ef + Fnp cocultures) for exploring the immunoregulatory effects and the relevant molecular mechanisms. Meanwhile, the transcriptomic profiles of coaggregated Ef and Fnp were analyzed. Ef was shown to coaggregate with Fnp strongly in CAB within 90 min by forming multiplexes clumps. Coaggregation with Fnp reinforced Ef resistance against unfavorable conditions including alkaline, hypertonic, nutrient-starvation, and antibiotic challenges. Compared with monospecies and coculture species, the coaggregation of Ef and Fnp significantly facilitates both species to invade dTHP-1 cells and aid Ef to survive within the cells. Compared with coculture species, dual-species interaction of Ef and Fnp significantly decreased the levels of pro-inflammatory cytokines IL-6, TNF-α, and chemokines MCP-1 secreted by dTHP-1 cells and lessened the phosphorylation of p38, JNK, and p65 signaling pathways. The transcriptome sequencing results showed that 111 genes were differentially expressed or Ef-Fnp coaggregated species compared to Ef monospecies; 651 genes were differentially expressed for Fnp when coaggregation with Ef. The analysis of KEGG pathway showed that Ef differentially expressed genes (DEGs) were enriched in quorum sensing and arginine biosynthesis pathway; Fnp DEGs were differentially concentrated in lipopolysaccharide (LPS) biosynthesis, biofilm formation, and lysine degradation pathway compared to monospecies. KEY POINTS: • Coaggregated with Fnp aids Ef's survival in environmental stress, especially in root canals after endodontic treatment. • The coaggregation of Ef and Fnp may weaken the pro-inflammatory response and facilitate Ef to evade killed by macrophages. • The coaggregation between Ef and Fnp altered interspecies transcriptional profiles.


Subject(s)
Enterococcus faecalis , Fusobacterium nucleatum , Macrophages , Stress, Physiological , Fusobacterium nucleatum/physiology , Fusobacterium nucleatum/genetics , Enterococcus faecalis/genetics , Enterococcus faecalis/physiology , Humans , Macrophages/microbiology , Macrophages/immunology , Cytokines/metabolism , Cytokines/genetics , Bacterial Adhesion , Coculture Techniques , Gene Expression Profiling , Transcriptome , Cell Line , Interleukin-6/genetics , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Inflammation
5.
Int Endod J ; 57(6): 769-783, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38483342

ABSTRACT

AIM: Previous endodontic research has provided limited understanding of the prevalence and roles of haemolytic and non-haemolytic Enterococcus faecalis strains in root filled teeth. This study aimed to determine the prevalence of these strains in root filled teeth with periradicular lesions and investigate their associated virulence factors. METHODOLOGY: A total of 36 root canal samples were collected from 36 subjects. The prevalence of E. faecalis was determined using culture and PCR methods. Antibiotic susceptibility of haemolytic and non-haemolytic E. faecalis strains was assessed using the broth dilution assay. The cytokine stimulation in periodontal ligament (PDL) cells and neutrophil migration were evaluated using real-time PCR and migration assay, respectively. Cell invasion ability of the strains was assessed using a cell culture model. Additionally, the virulence gene expression of the haemolytic and non-haemolytic strains was investigated using real-time PCR. The Mann-Whitney U and Spearman's ρ tests were used to examine the significant difference between the two strains and to analyse the correlation between phenotype and gene expression, respectively. RESULTS: Enterococcus faecalis was detected in 33.3% and 88.9% of samples by culture and real-time PCR, respectively. Haemolytic strains were found in 36.4% of subjects. Non-haemolytic strains exhibited susceptibility to erythromycin and varying susceptibility to tetracycline, while all haemolytic strains were resistant to both antibiotics. Haemolytic strains significantly upregulated the expression of IL-8, OPG and RANKL in PDL cells (p < .05). Notably, the fold increases in these genes were higher: IL-8 (556.1 ± 82.9 vs. 249.6 ± 81.8), OPG (2.2 ± 0.5 vs. 1.3 ± 0.2) and RANKL (1.8 ± 0.3 vs. 1.2 ± 0.1). Furthermore, haemolytic strains had a greater effect on neutrophil migration (68.7 ± 15.2% vs. 46.9 ± 11.4%) and demonstrated a higher level of internalization into oral keratinocyte cells (68.6 ± 0.4% vs. 33.8 ± 0.5%) (p < .05). They also showed enhanced expression of virulence genes associated with haemolysin, surface proteins, collagen-binding and aggregation substances. Gelatinase activity was only detectable in non-haemolytic strains. CONCLUSIONS: This study revealed that haemolytic strains E. faecalis possessed enhanced abilities in host invasion and a higher abundance of virulence factors, suggesting their potential contribution to more severe disease manifestations.


Subject(s)
Enterococcus faecalis , Virulence Factors , Humans , Enterococcus faecalis/pathogenicity , Enterococcus faecalis/genetics , Virulence Factors/genetics , Thailand/epidemiology , Female , Adult , Prevalence , Male , Tooth, Nonvital/microbiology , Middle Aged , Anti-Bacterial Agents/pharmacology , Real-Time Polymerase Chain Reaction , Microbial Sensitivity Tests , Dental Pulp Cavity/microbiology , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology
6.
Int Endod J ; 57(7): 922-932, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38374488

ABSTRACT

AIM: To compare the efficacy of Enterococcus faecalis biofilm removal using the GentleWave System (GWS) (Sonendo Inc, CA) on non-instrumented versus minimally instrumented root canal systems. METHODOLOGY: Thirty-four mandibular molars were autoclaved and allocated to four groups: Negative control (n = 5); positive control (n = 5); Group 1: non-instrumentation + GWS (NI + GWS) (n = 12); and Group 2: minimal instrumentation + GWS (MI + GWS) (n = 12). Of 34 samples, 24 samples with Vertucci type 2 configuration within the mesial root of each sample were allocated to Groups 1 and 2 and then matched based on the working length and root canal configuration. After inoculation of samples with E. faecalis for 3 weeks, the GWS was used on Group 1 without any instrumentation and Group 2 after instrumentation of mesial canals until size 20/06v. CFU and SEM analysis were used. RESULTS: Log10 (CFU/mL) from the positive control, and Group 1 and 2 were 7.41 ± 0.53, 3.41 ± 1.54, and 3.21 ± 1.54, respectively. Both groups showed a statistically significant difference in the reduction of viable E. faecalis cells compared to the positive control (Group 1 [p = .0001] and Group 2 [p < .0001]), whilst showing no significant difference between the two tested groups (p < .05). CONCLUSION: The use of GWS on the non-instrumented root canal system could be an effective disinfection protocol in removing the biofilm without dentin debris formation.


Subject(s)
Biofilms , Enterococcus faecalis , Mandible , Molar , Root Canal Preparation , Humans , Molar/microbiology , Enterococcus faecalis/isolation & purification , Mandible/surgery , Root Canal Preparation/instrumentation , Root Canal Preparation/methods , Tooth Root/microbiology , Microscopy, Electron, Scanning , Dental Pulp Cavity/microbiology , In Vitro Techniques
7.
Int Endod J ; 57(6): 700-712, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38404175

ABSTRACT

AIM: To evaluate the influence of different preparation tapers on the reduction in planktonic bacteria and biofilms of Enterococcus faecalis and Candida albicans in the apical third (4 mm) of the mesial roots of mandibular molars, correlating decontamination with canal shape. METHODOLOGY: After microtomography analysis for morphological standardization of the canals, 48 mandibular molar roots, each containing two canals (96 canals), were contaminated with E. faecalis and C. albicans and divided into four groups (n = 11) for canal instrumentation using ProDesign Logic 2 files with different tapers G (.03): # 25.03; G (.04): # 25.04; G (.05): # 25.05; and G (.06): # 25.06 and irrigation with 2.5% sodium hypochlorite. Four roots were examined under a scanning electron microscope (SEM) to qualitatively assess biofilm formation. Eight roots were used as the negative control group (samples were not contaminated). Bacteriological samples were taken exclusively from the apical third of the roots before and after chemical-mechanical preparation and bacterial counts were determined (CFU/mL). The final micro-CT scan was used to quantify the volume variation and unprepared canal area in the apical third. Statistical analysis was performed using the Kruskal-Wallis, Student-Newman-Keuls and Wilcoxon tests for analysis of microbiological data. anova and the Tukey or Games-Howell test were used for analysis of micro-CT data and Spearman's test for correlations (α = 5%). RESULTS: All groups showed a significant reduction in bacteria (p < .05), with no statistically significant difference between groups. There was no significant difference in per cent volume increase between groups. The unprepared area (Δ%) was affected by the file used (p = .026) and was significantly lower for G (.06) compared to G (.03). There was no statistically significant correlation among bacterial reduction, volume and unprepared area (p > .05). CONCLUSION: The different preparation tapers influenced root canal shaping in the apical third but did not improve decontamination in this region.


Subject(s)
Biofilms , Candida albicans , Dental Pulp Cavity , Enterococcus faecalis , Root Canal Preparation , X-Ray Microtomography , X-Ray Microtomography/methods , Humans , Root Canal Preparation/instrumentation , Root Canal Preparation/methods , Candida albicans/isolation & purification , Candida albicans/physiology , Dental Pulp Cavity/microbiology , Dental Pulp Cavity/diagnostic imaging , Sodium Hypochlorite/therapeutic use , Sodium Hypochlorite/pharmacology , Microscopy, Electron, Scanning , Molar/microbiology , Plankton , Root Canal Irrigants/administration & dosage , Root Canal Irrigants/therapeutic use , In Vitro Techniques , Tooth Apex/microbiology , Tooth Apex/diagnostic imaging
8.
Clin Oral Investig ; 28(6): 324, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761225

ABSTRACT

OBJECTIVES: To assess the growth of a multispecies biofilm on root canal dentin under different radiotherapy regimens. MATERIALS AND METHODS: Sixty-three human root dentin cylinders were distributed into six groups. In three groups, no biofilm was formed (n = 3): NoRT) non-irradiated dentin; RT55) 55 Gy; and RT70) 70 Gy. In the other three groups (n = 18), a 21-day multispecies biofilm (Enterococcus faecalis, Streptococcus mutans, and Candida albicans) was formed in the canal: NoRT + Bio) non-irradiated + biofilm; RT55 + Bio) 55 Gy + biofilm; and RT70 + Bio) 70 Gy + biofilm. The biofilm was quantified (CFUs/mL). Biofilm microstructure was assessed under SEM. Microbial penetration into dentinal tubules was assessed under CLSM. For the biofilm biomass and dentin microhardness pre- and after biofilm growth assessments, 45 bovine dentin specimens were distributed into three groups (n = 15): NoRT) non-irradiated + biofilm; RT55 + Bio) 55 Gy + biofilm; and RT70 + Bio) 70 Gy + biofilm. RESULTS: Irradiated specimens (70 Gy) had higher quantity of microorganisms than non-irradiated (p = .010). There was gradual increase in biofilm biomass from non-irradiated to 55 Gy and 70 Gy (p < .001). Irradiated specimens had greater reduction in microhardness after biofilm growth. Irradiated dentin led to the growth of a more complex and irregular biofilm. There was microbial penetration into the dentinal tubules, regardless of the radiation regimen. CONCLUSION: Radiotherapy increased the number of microorganisms and biofilm biomass and reduced dentin microhardness. Microbial penetration into dentinal tubules was noticeable. CLINICAL RELEVANCE: Cumulative and potentially irreversible side effects of radiotherapy affect biofilm growth on root dentin. These changes could compromise the success of endodontic treatment in oncological patients undergoing head and neck radiotherapy.


Subject(s)
Biofilms , Candida albicans , Dental Pulp Cavity , Dentin , Enterococcus faecalis , Streptococcus mutans , Biofilms/radiation effects , Dentin/microbiology , Dentin/radiation effects , Humans , Dental Pulp Cavity/microbiology , Dental Pulp Cavity/radiation effects , Candida albicans/radiation effects , Animals , Enterococcus faecalis/radiation effects , Streptococcus mutans/radiation effects , Cattle , Microscopy, Electron, Scanning , Hardness , Microscopy, Confocal , Radiotherapy Dosage
9.
Clin Oral Investig ; 28(3): 190, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38430333

ABSTRACT

OBJECTIVES: An adjunct in non-surgical periodontal therapy might be sodium hypochlorite (NaOCl)-based agents. The purpose of the present in vitro study was to get deeper knowledge on the influence of different parameters as time after mixing, pH, and chemical composition of an amino acid 0.475% NaOCl (AA-NaOCl) gel consisting of two components on its anti-biofilm activity. MATERIALS AND METHODS: Six-species biofilms were cultured for 5 days, before AA-NaOCl gel was applied. In the different series, the influence of the time after mixing of the two components before application, of the concentration of NaOCl in the gel mixture, of the pH of the gel mixture, and of an exchange of the amino acid component by hyaluronic acid (HA), was analyzed. RESULTS: Mixing time point experiments showed that the AA-NaOCl gel is capable of statistically significantly reducing colony-forming unit (cfu) counts up to 30 min after mixing, but only up to 20 min after mixing the reduction was more than 2 log10 cfu. The pH experiments indicate that a reduced pH results in a reduced activity of the NaOCl formulation. NaOCl concentrations in the formulation in the range from 0.475 to 0.2% provide adequate activity on biofilms. A HA/NaOCl gel was equally active against the biofilm as the AA-NaOCl gel. CONCLUSION: Mixing of the components should be made in a timeframe of 20 min before applications. An optimization of the composition of the NaOCl formulation might be possible and should be a topic in further in vitro studies. CLINICAL RELEVANCE: The AA-NaOCl gel formulation can be mixed up to 20 min before application. Further, the study indicates that the composition of the NaOCl gel formulation can be optimized.


Subject(s)
Periodontal Diseases , Sodium Hypochlorite , Humans , Sodium Hypochlorite/pharmacology , Sodium Hypochlorite/chemistry , Enterococcus faecalis , Periodontal Diseases/drug therapy , Bacteria , Amino Acids/pharmacology
10.
Clin Oral Investig ; 28(10): 520, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254714

ABSTRACT

OBJECTIVES: The mannose phosphotransferase system (Man-PTS) plays crucial roles in the adaptive metabolic activity of Enterococcus faecalis (E. faecalis) in adverse environments. The aim of this study was to evaluate the role of Man-PTS in the alkaline resistance of E. faecalis against calcium hydroxide (CH) and the effect of metformin (Met) on the alkaline resistance of E. faecalis to CH. MATERIALS AND METHODS: The regulatory role of Man-PTS EII in the alkaline resistance of E. faecalis was firstly investigated using a wild-type highly alkaline-resistant E. faecalis XS 003, standard ATCC 29212 and Man-PTS EIID gene deficient (△mptD) and overexpressing (+mptD) strains of E. faecalis. RNA sequencing of Met-treated E. faecalis was performed to further validate the effect of Met on Man-PTS. The effect of Met on CH resistance of E. faecalis was verified by evaluating the survival, membrane potential and permeability, intracellular pH and ATP, and the expression of Man-PTS EII and membrane transporter-related genes of E. faecalis. The effect of Met on the ability of CH to remove E. faecalis biofilm on the dentin surface was also tested. The in vivo therapeutic effect of Met plus CH (CHM) was further investigated in a rat apical periodontitis model induced by E. faecalis XS 003. RESULTS: Man-PTS EII significantly promoted the survival ability of E. faecalis in CH and enhanced its resistance to CH. The inhibition of Man-PTS EII by Met resulted in reduced alkaline resistance of E. faecalis in the presence of CH, while also enhancing the antimicrobial properties of CH against E. faecalis biofilm on dentin. Additionally, Met plus CH showed the synergistically promoted intra-canal E. faecalis infection control and healing of periapical lesion in rats. CONCLUSIONS: Met could significantly reduce the alkaline resistance of E. faecalis against CH through the modulation of Man-PTS EII, and improved the antibacterial effect of CH against E. faecalis infection both in vitro and in vivo. CLINICAL RELEVANCE: Met could significantly enhance the ability of CH to control E. faecalis infection through reducing the alkaline resistance of E. faecalis.


Subject(s)
Calcium Hydroxide , Enterococcus faecalis , Metformin , Enterococcus faecalis/drug effects , Animals , Rats , Metformin/pharmacology , Calcium Hydroxide/pharmacology , Biofilms/drug effects , In Vitro Techniques , Disease Models, Animal , Drug Resistance, Bacterial , Male , Rats, Sprague-Dawley , Anti-Bacterial Agents/pharmacology , Root Canal Irrigants/pharmacology
11.
Clin Oral Investig ; 28(5): 282, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683234

ABSTRACT

OBJECTIVES: This study aimed to compare the antimicrobial action, cytotoxicity, cleaning ability, and erosion of dentine of hypochlorous acid (HClO) obtained from an electrolytic device at two different concentrations (Dentaqua) and three concentrations of sodium hypochlorite (NaOCl). METHODS: Microbiological test-The root canals of sixty single-rooted extracted human teeth were inoculated with Enterococcus faecalis and divided into 6 groups (n = 10), according to decontamination protocol: DW (control); 1% NaOCl; 2.5% NaOCl; 5.25% NaOCl; 250 ppm HClO and 500 ppm HClO. The colony-forming units were counted to evaluate the decontamination potential of each group, calculating the reduction in bacterial percentage. Cytotoxicity test-Cytotoxicity was evaluated after inoculation of the same tested protocols in fibroblastic cells for 3 min, calculating the cell viability percentages. Specifical statistical analysis was performed (α = 5%). Cleaning ability and erosion-Fifty-six single-rooted bovine lower incisors were divided into seven groups of 8 roots each, being the test groups 1% NaOCl; 2.5% NaOCl; 5,25% NaOCl; 250 ppm HClO and 500 ppm HClO, and a negative and positive control. Negative control was not contaminated, and the other groups were inoculated with Enterococcus faecalis. SEM images were ranked as from the cleanest to the least clean. Erosion was also assessed, being ranked from the least to the most eroded dentine. RESULTS: The highest bacterial reduction was observed in experimental groups, with no statistical differences between them (p > 0.05). The highest number of viable cells was observed in control group, followed by 250 ppm HClO and 500 ppm HClO groups, with statistical differences between them (p < 0.05). 1% NaOCl; 2.5% NaOCl; 5.25% NaOCl and 500 ppm HClO displayed the cleanest areas. All sodium hypochlorite groups displayed erosion with higher ranks with greater concentration, while hypochlorous acid did not display any erosion regardless the concentration. CONCLUSIONS: It is possible to conclude that HClO obtained from an electrolytic device presented high antimicrobial activity and low cytotoxicity in both tested concentrations. 500 ppm HClO did not display erosion and showed great cleaning ability. CLINICAL RELEVANCE: The use of 500 ppm hypochlorous acid may reduce unfavorable behavior of sodium hypochlorite whilst maintaining its antimicrobial action.


Subject(s)
Dental Pulp Cavity , Enterococcus faecalis , Hypochlorous Acid , Root Canal Irrigants , Sodium Hypochlorite , Sodium Hypochlorite/pharmacology , Hypochlorous Acid/pharmacology , Enterococcus faecalis/drug effects , Humans , Root Canal Irrigants/pharmacology , Dental Pulp Cavity/microbiology , Animals , Cattle , In Vitro Techniques , Dentin/drug effects , Dentin/microbiology , Cell Survival/drug effects , Anti-Infective Agents/pharmacology , Electrolysis
12.
Clin Oral Investig ; 28(5): 265, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652209

ABSTRACT

OBJECTIVES: This ex vivo human study aimed to evaluate the efficacy of NaOCl and chlorhexidine gluconate (CHG) irrigations in eliminating Enterococcus faecalis from the RCS of primary molars. MATERIALS AND METHODS: Disinfected extracted primary molars were inoculated with E. faecalis for 24 h. Then, the RCS samples were then irrigated with either 2.5% NaOCl, 0.2% and 2% CHG, or sham saline. The samples were collected immediately after irrigation; and 24 h later, the bacterial viability and counts were measured using blood agar and qRT-PCR, respectively. Histological sections were used to measure E. faecalis penetration and viability in dentin tubules using fluorescence microscopy. RESULTS: The recovery of viable E. faecalis after the irrigation of the primary molars showed more significant bactericidal effects of NaOCl and 0.2% and 2% CHG than of saline. Immediately after the irrigation, the NaOCl group showed the greatest reduction in E. faecalis; and 24 h later, all the groups had lower viable E. faecalis than the saline control. The bacterial penetration was also lowest in the NaOCl group, although there was no difference in bacterial viability in the tubules between the groups. CONCLUSION: In primary teeth, NaOCl and CHG showed similar degrees of bacterial elimination efficacy in terms of E.faecalis. CLINICAL RELEVANCE: Within the limitations of this study, NaOCl and CHG have the similar ability to perform endodontic irrigation of primary ex vivo teeth regarding the elimination of E.faecalis, but NaOCl penetrates dentin tubules better.


Subject(s)
Chlorhexidine , Chlorhexidine/analogs & derivatives , Dental Pulp Cavity , Enterococcus faecalis , Molar , Root Canal Irrigants , Sodium Hypochlorite , Tooth, Deciduous , Chlorhexidine/pharmacology , Enterococcus faecalis/drug effects , Humans , Sodium Hypochlorite/pharmacology , Root Canal Irrigants/pharmacology , Molar/microbiology , Tooth, Deciduous/microbiology , Dental Pulp Cavity/microbiology , In Vitro Techniques , Microscopy, Fluorescence , Anti-Infective Agents, Local/pharmacology , Real-Time Polymerase Chain Reaction , Microbial Viability/drug effects
13.
Clin Oral Investig ; 28(3): 175, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38403667

ABSTRACT

OBJECTIVES: Effective disinfection of the root canals is the cornerstone of successful endodontic treatment. Diminishing the microbial load within the root canal system is crucial for healing in endodontically treated teeth. The aim of this study was to evaluate the effect of 2780 nm Er,Cr:YSGG and 940 nm diode lasers on the eradication of microorganisms from single-rooted teeth with asymptomatic apical periodontitis. MATERIALS AND METHODS: Thirty participants conforming to the inclusion criteria were randomly divided into 3 groups according to the disinfection protocol used; Conventional group: 2.5% Sodium Hypochlorite (NaOCl) and 17% EDTA solution NaOCl/EDTA, Dual laser group: 2780 nm Erbium, chromium: yttrium scandium-gallium-garnet (Er,Cr:YSGG) laser and 940 nm diode laser Er,CrYSGG/Diode, and Combined group: 17% EDTA and 940 nm diode laser EDTA/Diode. Bacterial samples were collected before and after intervention. The collected data were statistically analyzed using Friedman's test and Kruskal-Wallis test (P ≤ 0.05). RESULTS: The results of the study showed that both dual laser Er,CrYSGG/Diode and combined laser EDTA/Diode groups showed significantly less mean Log10 CFU/ml of aerobic and anaerobic bacterial counts than the conventional NaOCl/EDTA group. CONCLUSIONS: In this study we evaluated in vivo the bactericidal efficacy of three disinfection protocols for endodontic treatment of single-rooted teeth with apical periodontitis. The results indicated that both dual laser Er,CrYSGG/Diode and combined laser EDTA/Diode groups provide superior bactericidal effect compared to the conventional NaOCl/EDTA group. CLINICAL RELEVANCE: The integration of lasers into root canal disinfection protocols has demonstrated significant bacterial reduction which might promote healing and long-term success.


Subject(s)
Lasers, Solid-State , Periapical Periodontitis , Humans , Lasers, Semiconductor/therapeutic use , Disinfection/methods , Dental Pulp Cavity/microbiology , Edetic Acid/pharmacology , Edetic Acid/therapeutic use , Enterococcus faecalis , Root Canal Irrigants/pharmacology , Sodium Hypochlorite/pharmacology , Sodium Hypochlorite/therapeutic use , Lasers, Solid-State/therapeutic use , Anti-Bacterial Agents/therapeutic use , Periapical Periodontitis/drug therapy
14.
ScientificWorldJournal ; 2024: 6658164, 2024.
Article in English | MEDLINE | ID: mdl-38450244

ABSTRACT

The use of medicinal plant preparations to clean and disinfect root canal infection is gaining popularity. The aim of this study was to evaluate the bioactive composition of leaf extracts of Moringa oleifera plants cultivated in Iraq (specifically Baghdad) and their antimicrobial activity against selected root canal pathogens for potential application in endodontic treatment. Materials and Methods. Moringa leaf extracts were prepared either through cold maceration or warm digestion techniques to perform an ethanolic or aqueous extraction, respectively. Phytochemical detection was performed before thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) to measure flavonoids and phenolic compounds within both extracts. Then, their antimicrobial activities were investigated against Streptococcus mutans, Enterococcus faecalis, and Candida albicans through minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), and agar well diffusion assay in comparison to NaOCl and Ca(OH)2. Results. Phytochemical screening showed several active ingredients but with higher expression of flavonoids and phenolic compounds. Also, different types of these compounds were detected through TLC and quantified by HPLC. MIC values for ethanolic extract against Streptococcus mutans, Enterococcus faecalis, and Candida albicans were 60, 65, and 55, respectively, while for aqueous extract, MIC values were 70, 80, and 50, respectively. Aqueous extract showed a higher inhibition zone than ethanolic extract for both Streptococcus mutans and Enterococcus faecalis with a statistically significant difference (p ≤ 0.001) for all tested materials except with NaOCl and Ca(OH)2 in Streptococcus mutans and Enterococcus faecalis, respectively. The ethanolic extract showed a higher inhibition zone against Candida albicans, with a statistically significant difference (p ≤ 0.001) for all tested materials. Conclusion. Ethanolic and aqueous extracts of Moringa oleifera leaves cultivated in Baghdad contain considerable quantities of phytochemicals, especially flavonoid and phenolic compounds, and demonstrated antimicrobial activities against selected endodontic pathogens. Therefore, Moringa leaf extracts could be suggested as an alternative antimicrobial material in endodontic treatment.


Subject(s)
Anti-Infective Agents , Moringa oleifera , Anti-Infective Agents/pharmacology , Ethanol , Candida albicans , Enterococcus faecalis , Flavonoids , Phenols , Phytochemicals/pharmacology
15.
Am J Dent ; 37(3): 126-130, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899991

ABSTRACT

PURPOSE: To evaluate the antimicrobial activity of dentifrices based on Malva sylvestris and propolis and the effect on the acrylic resin. METHODS: The inhibitory effect against Candida albicans, Enterococcus faecalis and Streptococcus mutans was determined. The specimens of resin were divided into groups: Control (brushing with distilled water); brushing with Colgate; brushing with Protex; brushing with Malvatricin, brushing with Proporalcare Dental Gel and brushing with Green Propolis Dental Gel. Brushing was carried out in a brushing machine. Roughness and color were assessed. The data were analyzed by ANOVA, followed by the Bonferroni post test (α= 0.05). RESULTS: The products evaluated showed antimicrobial activity against all microorganisms (P< 0.05), except Proporalcare Dental Gel, which was not effective against E. faecalis. Greater roughness (P< 0.05) was observed in the samples treated with Colgate. The samples from control and Protex groups showed the lowest color variation and the highest luminosity, with a difference in relation to the others (P< 0.05), which showed higher values, although clinically acceptable. CLINICAL SIGNIFICANCE: The dentifrices based on natural products can be indicated for cleaning prostheses, since they showed antimicrobial activity and did not cause perceptible color changes of the resin tested. The dentifrices did not produce adverse effects on the surface of the resin or did so less than the conventional dentifrice.


Subject(s)
Acrylic Resins , Candida albicans , Dentifrices , Denture Bases , Streptococcus mutans , Dentifrices/pharmacology , Streptococcus mutans/drug effects , Candida albicans/drug effects , Enterococcus faecalis/drug effects , Propolis/pharmacology , Surface Properties , Materials Testing , Color , Humans , Anti-Infective Agents/pharmacology , Toothbrushing , Toothpastes/pharmacology , Toothpastes/chemistry , Silicic Acid
16.
Odontology ; 112(2): 390-398, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37646916

ABSTRACT

This study aimed to evaluate the effectiveness of two sodium hypochlorite concentrations at different exposure times and temperatures against Enterococcus faecalis biofilms of varying ages in human dentinal tubules. Dentin blocks were infected with E. faecalis for either 3 days or 3 weeks of incubation. Subsequently, the samples were exposed to sterile water, 2%, and 5.25% sodium hypochlorite for 3 and 10 min at 20 °C and 60 °C . Viability staining and confocal laser scanning microscopy were used to assess the proportion of killed bacteria in the dentinal tubules after exposure. There are no significant differences in the efficacy of E. faecalis killing between 2% sodium hypochlorite at 60 °C for various exposure times and 5.25% sodium hypochlorite at different temperatures or exposure times (P > 0.05). When both solutions were compared at the same temperatures with a 10-min exposure time, no significant differences in the effectiveness of E. faecalis killing between 2% and 5.25% sodium hypochlorite were observed (P > 0.05). To optimize the effectiveness of sodium hypochlorite in killing E. faecalis while minimizing potential damage to root dentin and soft tissue, clinicians should prioritize increasing the temperature or exposure time of sodium hypochlorite, rather than raising its concentration.


Subject(s)
Enterococcus faecalis , Sodium Hypochlorite , Humans , Sodium Hypochlorite/pharmacology , Temperature , Dentin/microbiology , Root Canal Irrigants/pharmacology , Biofilms , Microscopy, Confocal , Dental Pulp Cavity/microbiology
17.
Odontology ; 112(3): 929-937, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38280114

ABSTRACT

The purpose of this study was to evaluate the antibacterial efficacy of using 2.5% NaOCl, 2% chlorhexidine (CHX), Irritrol, and chitosan-coated silver nanoparticles (AgCNPs) alone or in combination with deoxyribonuclease I (DNase I) and trypsin pre-enzyme applications in dentin samples contaminated with Enterococcus faecalis (E. faecalis) by CLSM. 144 dentin blocks with confirmed E. faecalis biofilm formation were divided randomly according to the irrigation protocol (n = 12): NaOCl, CHX, Irritrol, AgCNPs, trypsin before NaOCl, CHX, Irritrol, AgCNPs, and DNase I before NaOCl, CHX, Irritrol, AgCNPs. Dentin blocks were stained with the Live/Dead BacLight Bacterial Viability Kit and viewed with CLSM after irrigation applications. The percentage of dead and viable bacteria was calculated using ImageJ software on CLSM images. At a significance level of p < 0.05, the obtained data were analyzed using one-way Anova and post-hoc Tukey tests. In comparison with NaOCl, CHX had a higher percentage of dead bacteria, both when no pre-enzyme was applied and when DNase I was applied as a pre-enzyme (p < 0.05). There was no difference in the percentage of dead bacteria between the irrigation solutions when trypsin was applied as a pre-enzyme (p > 0.05). AgCNPs showed a higher percentage of dead bacteria when trypsin was applied as a pre-enzyme compared to other irrigation solutions (p < 0.05), while the pre-enzyme application did not affect the percentage of dead bacteria in NaOCl, CHX, and Irritrol (p > 0.05). No irrigation protocol tested was able to eliminate the E. faecalis biofilm. While the application of trypsin as a pre-enzyme improved the antimicrobial effect of AgCNPs, it did not make any difference over other irrigation solutions.


Subject(s)
Deoxyribonuclease I , Enterococcus faecalis , Root Canal Irrigants , Sodium Hypochlorite , Trypsin , Deoxyribonuclease I/pharmacology , Root Canal Irrigants/pharmacology , Enterococcus faecalis/drug effects , Trypsin/pharmacology , Sodium Hypochlorite/pharmacology , Metal Nanoparticles , Silver/pharmacology , Chlorhexidine/pharmacology , Humans , Chitosan/pharmacology , Biofilms/drug effects , In Vitro Techniques , Dentin/microbiology
18.
Odontology ; 112(3): 826-838, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38265514

ABSTRACT

This study explored the antimicrobial effects of ketoprofen, piroxicam, and celecoxib alone or combined with calcium hydroxide (CH) against two strains of Enterococcus faecalis (E. faecalis) and assessed the influence of such combinations on the pH of CH. Minimum inhibitory concentrations (MICs) of the three tested NSAIDs were determined. Tested pastes were placed into wells punched in seeded agar plates and the bacterial inhibition zones were measured. Antibiofilm activity was assessed against 3 weeks of biofilm induced in bovine dentine blocks. The pH of the pastes was measured at four-time intervals. MIC values were 3.12, 25, and 25 mg/ml for ketoprofen, piroxicam, and celecoxib, respectively, and were similar for both bacterial strains except for celecoxib, which showed 8% growth at the highest tested concentration against vancomycin-resistant E. faecalis. Ketoprofen had the largest mean inhibition zone that was comparable to CH. None of the six tested pastes exhibited antibiofilm activity of a significant level in comparison to CH. A noticeable increase in the antibiofilm activity was found when 20% NSAIDs were added to CH while maintaining an alkaline pH. Ketoprofen was found to be the most effective among the tested NSAIDs. Although its effect was comparable to CH, adding ketoprofen at a ratio of 20% resulted in 50% higher antimicrobial action than CH alone. Accordingly, incorporating NSAIDs in inter-appointment dressing has the potential to utilize their anti-inflammatory, local analgesic, and antibacterial actions, which overcome the limitations of CH and improve the outcome of root canal treatment.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Biofilms , Calcium Hydroxide , Enterococcus faecalis , Microbial Sensitivity Tests , Calcium Hydroxide/pharmacology , Enterococcus faecalis/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Animals , Cattle , Biofilms/drug effects , In Vitro Techniques , Piroxicam/pharmacology , Ketoprofen/pharmacology , Celecoxib/pharmacology , Hydrogen-Ion Concentration , Root Canal Irrigants/pharmacology
19.
Int J Mol Sci ; 25(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39062969

ABSTRACT

Endodontic infections pose significant challenges in dental practice due to their persistence and potential complications. Among the causative agents, Enterococcus faecalis stands out for its ability to form biofilms and develop resistance to conventional antibiotics, leading to treatment failures and recurrent infections. The urgent need for alternative treatments arises from the growing concern over antibiotic resistance and the limitations of current therapeutic options in combating E. faecalis-associated endodontic infections. Plant-based natural compounds offer a promising avenue for exploration, given their diverse bioactive properties and potential as sources of novel antimicrobial agents. In this study, molecular docking and dynamics simulations are employed to explore the interactions between SrtA, a key enzyme in E. faecalis, and plant-based natural compounds. Analysis of phytocompounds through molecular docking unveiled several candidates with binding energies surpassing that of the control drug, ampicillin, with pinocembrin emerging as the lead compound due to its strong interactions with key residues of SrtA. Comparative analysis with ampicillin underscored varying degrees of structural similarity among the study compounds. Molecular dynamics simulations provided deeper insights into the dynamic behavior and stability of protein-ligand complexes, with pinocembrin demonstrating minimal conformational changes and effective stabilization of the N-terminal region. Free energy landscape analysis supported pinocembrin's stabilizing effects, further corroborated by hydrogen bond analysis. Additionally, physicochemical properties analysis highlighted the drug-likeness of pinocembrin and glabridin. Overall, this study elucidates the potential anti-bacterial properties of selected phytocompounds against E. faecalis infections, with pinocembrin emerging as a promising lead compound for further drug development efforts, offering new avenues for combating bacterial infections and advancing therapeutic interventions in endodontic practice.


Subject(s)
Anti-Bacterial Agents , Enterococcus faecalis , Molecular Docking Simulation , Molecular Dynamics Simulation , Enterococcus faecalis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Humans , Endodontics/methods
20.
Int J Mol Sci ; 25(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39126003

ABSTRACT

Periapical lesions are common pathologies affecting the alveolar bone, often initiated by intraradicular lesions resulting from microbial exposure to dental pulp. These microorganisms trigger inflammatory and immune responses. When endodontic treatment fails to eliminate the infection, periapical lesions persist, leading to bone loss. The RANK/RANKL/OPG pathway plays a crucial role in both the formation and the destruction of the bone. In this study, the objective was to inhibit the RANK/RANKL pathway in vitro within exposed Thp-1 macrophages to endodontic microorganisms, specifically Enterococcus faecalis, which was isolated from root canals of 20 patients with endodontic secondary/persistent infection, symptomatic and asymptomatic, and utilizing an α-IRAK-4 inhibitor, we introduced endodontic microorganisms and/or lipoteichoic acid from Streptococcus spp. to cellular cultures in a culture plate, containing thp-1 cells and/or PBMC from patients with apical periodontitis. Subsequently, we assessed the percentages of RANK+, RANKL+, and OPG+ cells through flow cytometry and measured the levels of several inflammatory cytokines (IL-1ß, TNF-α, IL-6, IL-8, IL-10, and IL-12p70) in the cellular culture supernatant through a CBA kit and performed analysis by flow cytometry. A significant difference was observed in the percentages of RANK+RANKL+, OPG+ RANKL+ cells in thp-1 cells and PBMCs from patients with apical periodontitis. The findings revealed significant differences in the percentages of the evaluated cells, highlighting the novel role of the IRAK-4 inhibitor in addressing this oral pathology, apical periodontitis, where bone destruction is observed.


Subject(s)
Macrophages , Periapical Periodontitis , RANK Ligand , Receptor Activator of Nuclear Factor-kappa B , Signal Transduction , Humans , RANK Ligand/metabolism , Macrophages/metabolism , Macrophages/drug effects , Macrophages/immunology , THP-1 Cells , Receptor Activator of Nuclear Factor-kappa B/metabolism , Periapical Periodontitis/metabolism , Periapical Periodontitis/microbiology , Periapical Periodontitis/pathology , Cytokines/metabolism , Enterococcus faecalis , Lipopolysaccharides , Dental Pulp Cavity/microbiology , Dental Pulp Cavity/metabolism , Male , Osteoprotegerin/metabolism , Adult , Teichoic Acids/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL