Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.117
Filter
Add more filters

Publication year range
1.
PLoS Biol ; 19(3): e3001131, 2021 03.
Article in English | MEDLINE | ID: mdl-33784292

ABSTRACT

A new collection of evidence-based commentaries explores critical challenges facing scientists and policymakers working to address the potential environmental and health harms of microplastics. The commentaries reveal a pressing need to develop robust methods to detect, evaluate, and mitigate the impacts of this emerging contaminant, most recently found in human placentas.


Subject(s)
Environmental Monitoring/methods , Environmental Pollution/analysis , Plastics/toxicity , Environmental Restoration and Remediation/methods , Humans , Microplastics/toxicity , Public Health
2.
PLoS Biol ; 19(3): e3000932, 2021 03.
Article in English | MEDLINE | ID: mdl-33784313

ABSTRACT

Public concern over the environmental and public health impacts of the emerging contaminant class "microplastics" has recently prompted government agencies to consider mitigation efforts. Microplastics do not easily fit within traditional risk-based regulatory frameworks because their persistence and extreme diversity (of size, shape, and chemical properties associated with sorbed chemicals) result in high levels of uncertainty in hazard and exposure estimates. Due to these serious complexities, addressing microplastics' impacts requires open collaboration between scientists, regulators, and policymakers. Here we describe ongoing international mitigation efforts, with California as a case study, and draw lessons from a similarly diverse and environmentally persistent class of emerging contaminants (per- and polyfluoroalkyl substances) that is already disrupting traditional regulatory paradigms, discuss strategies to address challenges associated with developing health-protective regulations and policies related to microplastics, and suggest ways to maximize impacts of research.


Subject(s)
Environmental Monitoring/methods , Microplastics/adverse effects , Microplastics/analysis , California , Environmental Monitoring/legislation & jurisprudence , Humans , Information Dissemination/methods , Public Health , Water Pollutants, Chemical/analysis
3.
Environ Sci Technol ; 58(23): 10240-10251, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38803057

ABSTRACT

Microplastics (MPs) in natural waters are heterogeneously mixed with other natural particles including algal cells and suspended sediments. An easy-to-use and rapid method for directly measuring and distinguishing MPs from other naturally present colloids in the environment would expedite analytical workflows. Here, we established a database of MP scattering and fluorescence properties, either alone or in mixtures with natural particles, by stain-free flow cytometry. The resulting high-dimensional data were analyzed using machine learning approaches, either unsupervised (e.g., viSNE) or supervised (e.g., random forest algorithms). We assessed our approach in identifying and quantifying model MPs of diverse sizes, morphologies, and polymer compositions in various suspensions including phototrophic microorganisms, suspended biofilms, mineral particles, and sediment. We could precisely quantify MPs in microbial phototrophs and natural sediments with high organic carbon by both machine learning models (identification accuracies over 93%), although it was not possible to distinguish between different MP sizes or polymer compositions. By testing the resulting method in environmental samples through spiking MPs into freshwater samples, we further highlight the applicability of the method to be used as a rapid screening tool for MPs. Collectively, this workflow can be easily applied to a diverse set of samples to assess the presence of MPs in a time-efficient manner.


Subject(s)
Flow Cytometry , Machine Learning , Microplastics , Suspensions , Environmental Monitoring/methods , Water Pollutants, Chemical
4.
Environ Sci Technol ; 58(14): 6359-6369, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38512318

ABSTRACT

There is only sparse empirical data on the settling velocity of small, nonbuoyant microplastics thus far, although it is an important parameter governing their vertical transport within aquatic environments. This study reports the settling velocities of 4031 exemplary microplastic particles. Focusing on the environmentally most prevalent particle shapes, irregular microplastic fragments of four different polymer types (9-289 µm) and five discrete length fractions (50-600 µm) of common nylon and polyester fibers are investigated, respectively. All settling experiments are carried out in quiescent water by using a specialized optical imaging setup. The method has been previously validated in order to minimize disruptive factors, e.g., thermal convection or particle interactions, and thus enable the precise measurements of the velocities of individual microplastic particles (0.003-9.094 mm/s). Based on the obtained data, ten existing models for predicting a particle's terminal settling velocity are assessed. It is concluded that models, which were specifically deduced from empirical data on larger microplastics, fail to provide accurate predictions for small microplastics. Instead, a different approach is highlighted as a viable option for computing settling velocities across the microplastics continuum in terms of size, density, and shape.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Nylons , Water , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
5.
Environ Sci Technol ; 58(12): 5491-5499, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38478875

ABSTRACT

Measured microplastic concentrations in river surface waters fluctuate greatly. This variability is affected by season and is codriven by factors, such as sampling methodologies, sampling site, or sampling position within site. Unfortunately, most studies comprise single-instance measurements, whereas extended sampling periods are better suited to assessing the relevance of such factors. Moreover, microplastic concentrations in riverine water column remain underexplored. Similar to the oceans, however, this compartment likely holds significant amounts of microplastics. By representatively sampling the entire Rhine River cross-section near Basel through five sampling points over 22 months, we found a median microplastic (50-3000 µm) concentration of 4.48 n m-3, and estimated a widely ranging load between 4.04 × 102 n s-1 and 3.57 × 105 n s-1. We also show that the microplastic concentration in the water column was not well explained by river discharge. This suggests that although high discharge events as observed here can over short time periods lead to peak microplastic concentrations (e.g., 1.23 × 102 n m-3), microplastic load variance was not dominated by discharge in the study area.


Subject(s)
Microplastics , Water Pollutants, Chemical , Rivers , Plastics , Water , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
6.
Environ Sci Technol ; 58(20): 8919-8931, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38709668

ABSTRACT

For the first time, we present a much-needed technology for the in situ and real-time detection of nanoplastics in aquatic systems. We show an artificial intelligence-assisted nanodigital in-line holographic microscopy (AI-assisted nano-DIHM) that automatically classifies nano- and microplastics simultaneously from nonplastic particles within milliseconds in stationary and dynamic natural waters, without sample preparation. AI-assisted nano-DIHM identifies 2 and 1% of waterborne particles as nano/microplastics in Lake Ontario and the Saint Lawrence River, respectively. Nano-DIHM provides physicochemical properties of single particles or clusters of nano/microplastics, including size, shape, optical phase, perimeter, surface area, roughness, and edge gradient. It distinguishes nano/microplastics from mixtures of organics, inorganics, biological particles, and coated heterogeneous clusters. This technology allows 4D tracking and 3D structural and spatial study of waterborne nano/microplastics. Independent transmission electron microscopy, mass spectrometry, and nanoparticle tracking analysis validates nano-DIHM data. Complementary modeling demonstrates nano- and microplastics have significantly distinct distribution patterns in water, which affect their transport and fate, rendering nano-DIHM a powerful tool for accurate nano/microplastic life-cycle analysis and hotspot remediation.


Subject(s)
Artificial Intelligence , Microplastics , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Water/chemistry
7.
Environ Sci Technol ; 58(9): 4334-4345, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38382548

ABSTRACT

Microplastic mixtures are ubiquitously distributed in global ecosystems and include varying types. However, it remains unknown how microplastic diversity affects the biotic interactions of microbes. Here, we developed novel experiments of 600 microcosms with microplastic diversity ranging from 1 to 6 types and examined ecological networks for microbial communities in lake sediments after 2 months of incubation at 15 and 20 °C. We found that microplastic diversity generally enhanced the complexity of microbial networks at both temperatures, such as increasing network connectance and reducing average path length. This phenomenon was further confirmed by strengthened species interactions toward high microplastic diversity except for the negative interactions at 15 °C. Interestingly, increasing temperatures further exaggerated the effects of microplastic diversity on network structures, resulting in higher network connectivity and species interactions. Consistently, using species extinction simulations, we found that higher microplastic diversity and temperature led to more robust networks, and their effects were additionally and positively mediated by the presence of biodegradable microplastics. Our findings provide the first evidence that increasing microplastic diversity could unexpectedly promote the complexity and stability of microbial networks and that future warming could amplify this effect.


Subject(s)
Microbiota , Water Pollutants, Chemical , Microplastics , Plastics , Ecosystem , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis
8.
Environ Sci Technol ; 58(15): 6772-6780, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38577774

ABSTRACT

The quality of chemical analysis is an important aspect of passive sampling-based environmental assessments. The present study reports on a proficiency testing program for the chemical analysis of hydrophobic organic compounds in silicone and low-density polyethylene (LDPE) passive samplers and hydrophilic compounds in polar organic chemical integrative samplers. The median between-laboratory coefficients of variation (CVs) of hydrophobic compound concentrations in the polymer phase were 33% (silicone) and 38% (LDPE), similar to the CVs obtained in four earlier rounds of this program. The median CV over all rounds was 32%. Much higher variabilities were observed for hydrophilic compound concentrations in the sorbent: 50% for the untransformed data and a factor of 1.6 after log transformation. Limiting the data to the best performing laboratories did not result in less variability. Data quality for hydrophilic compounds was only weakly related to the use of structurally identical internal standards and was unrelated to the choice of extraction solvent and extraction time. Standard deviations of the aqueous concentration estimates for hydrophobic compound sampling by the best performing laboratories were 0.21 log units for silicone and 0.27 log units for LDPE (factors of 1.6 to 1.9). The implications are that proficiency testing programs may give more realistic estimates of uncertainties in chemical analysis than within-laboratory quality control programs and that these high uncertainties should be taken into account in environmental assessments.


Subject(s)
Polyethylene , Water Pollutants, Chemical , Polyethylene/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Organic Chemicals , Silicones
9.
Environ Sci Technol ; 58(12): 5229-5243, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38466915

ABSTRACT

Silicone-based passive samplers, commonly paired with gas chromatography-mass spectrometry (GC-MS) analysis, are increasingly utilized for personal exposure assessments. However, its compatibility with the biotic exposome remains underexplored. In this study, we introduce the wearable silicone-based AirPie passive sampler, coupled with nontargeted liquid chromatography with high-resolution tandem mass spectrometry (LC-HRMS/MS), GC-HRMS, and metagenomic shotgun sequencing methods, offering a comprehensive view of personalized airborne biotic and abiotic exposomes. We applied the AirPie samplers to 19 participants in a unique deep underwater confined environment, annotating 4,390 chemical and 2,955 microbial exposures, integrated with corresponding transcriptomic data. We observed significant shifts in environmental exposure and gene expression upon entering this unique environment. We noted increased exposure to pollutants, such as benzenoids, polycyclic aromatic hydrocarbons (PAHs), opportunistic pathogens, and associated antibiotic-resistance genes (ARGs). Transcriptomic analyses revealed the activation of neurodegenerative disease-related pathways, mostly related to chemical exposure, and the repression of immune-related pathways, linked to both biological and chemical exposures. In summary, we provided a comprehensive, longitudinal exposome map of the unique environment and underscored the intricate linkages between external exposures and human health. We believe that the AirPie sampler and associated analytical methods will have broad applications in exposome and precision medicine.


Subject(s)
Exposome , Neurodegenerative Diseases , Polycyclic Aromatic Hydrocarbons , Wearable Electronic Devices , Humans , Confined Spaces , Transcriptome , Environmental Monitoring/methods , Silicones
10.
Environ Sci Technol ; 58(9): 4302-4313, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38394333

ABSTRACT

The pollution of the marine environment with plastic debris is expected to increase, where ocean currents and winds cause their accumulation in convergence zones like the North Pacific Subtropical Gyre (NPSG). Surface-floating plastic (>330 µm) was collected in the North Pacific Ocean between Vancouver (Canada) and Singapore using a neuston catamaran and identified by Fourier-transform infrared spectroscopy (FT-IR). Baseline concentrations of 41,600-102,700 items km-2 were found, dominated by polyethylene and polypropylene. Higher concentrations (factors 4-10) of plastic items occurred not only in the NPSG (452,800 items km-2) but also in a second area, the Papaha̅naumokua̅kea Marine National Monument (PMNM, 285,200 items km-2). This second maximum was neither reported previously nor predicted by the applied ocean current model. Visual observations of floating debris (>5 cm; 8-2565 items km-2 and 34-4941 items km-2 including smaller "white bits") yielded similar patterns of baseline pollution (34-3265 items km-2) and elevated concentrations of plastic debris in the NPSG (67-4941 items km-2) and the PMNM (295-3748 items km-2). These findings suggest that ocean currents are not the only factor provoking plastic debris accumulation in the ocean. Visual observations may be useful to increase our knowledge of large-scale (micro)plastic pollution in the global oceans.


Subject(s)
Environmental Monitoring , Plastics , Environmental Monitoring/methods , Oceans and Seas , Pacific Ocean , Spectroscopy, Fourier Transform Infrared , Waste Products/analysis , Canada
11.
Environ Sci Technol ; 58(6): 2922-2930, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38294405

ABSTRACT

Microplastics (MPs) are pollutants of global concern, and bioaccumulation determines their biological effects. Although microorganisms form a large fraction of our ecosystem's biomass and are important in biogeochemical cycling, their accumulation of MPs has never been confirmed in natural waters because current tools for field biological samples can detect only MPs > 10 µm. Here, we show that stimulated Raman scattering microscopy (SRS) can image and quantify the bioaccumulation of small MPs (<10 µm) in protozoa. Our label-free method, which differentiates MPs by their SRS spectra, detects individual and mixtures of different MPs (e.g., polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, polystyrene, and poly(methyl methacrylate)) in protozoa. The ability of SRS to quantify cellular MP accumulation is similar to that of flow cytometry, a fluorescence-based method commonly used to determine cellular MP accumulation. Moreover, we discovered that protozoa in water samples from Yangtze River, Xianlin Wastewater Treatment Plant, Lake Taihu and the Pearl River Estuary accumulated MPs < 10 µm, but the proportion of MP-containing cells was low (∼2-5%). Our findings suggest that small MPs could potentially enter the food chain and transfer to organisms at higher trophic levels, posing environmental and health risks that deserve closer scrutiny.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Bioaccumulation , Ecosystem , Nonlinear Optical Microscopy , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
12.
Environ Res ; 245: 118024, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38151151

ABSTRACT

River systems are important recipients of environmental plastic pollution and have become key pathways for the transfer of mismanaged waste from the land to the ocean. Understanding the sources and fate of plastic debris, including plastic litter (>5 mm) and microplastics (MPs) (<5 mm), entering different riverine systems is essential to mitigate the ongoing environmental plastic pollution crisis. We comprehensively investigated the plastic pollution in the catchments of two rivers in the Yangtze River basin: an urban river, the Suzhou section of the Beijing-Hangzhou Grand Canal (SZ); and a pristine rural river, the Jingmen section of the Hanjiang River (JM). The abundance of plastic pollutants in SZ was significantly higher than in JM: 0.430 ± 0.450 items/m3 and 0.003 ± 0.003 items/m3 of plastic litter in the water; 23.47 ± 25.53 n/m3 and 2.78 ± 1.55 n/m3 MPs in the water; and 218.82 ± 77.40 items/kg and 5.30 ± 1.99 items/kg of MPs in the sediment, respectively. Plastic litter and MPs were closely correlated in abundance and polymer composition. Overall, the polymer type, shape and color of MPs were dominant by polypropylene (42.5%), fragment (60.4%) and transparent (40.0%), respectively. Source tracing analysis revealed that packaging, shipping, and wastewater were the primary sources of plastic pollutants. The mantel analysis indicated that socio-economic and geospatial factors play crucial roles in driving the hotspot formation of plastic pollution in river networks. The composition of the MP communities differed significantly between the sediments and the overlying water. The urban riverbed sediments had a more pronounced pollutant 'sink' effect compared with the pristine rivers. These findings suggested that the modification of natural streams during urbanization may influence the transport and fate of plastic pollutants in them. Our results offer pivotal insights into effective preventive measures.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Plastics , Rivers , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Microplastics , Water
13.
Environ Res ; 243: 117882, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38070853

ABSTRACT

Urban rivers represent the major conduits for land-sourced microplastics in the global oceans, yet the real-time dynamics of their emissions in rivers during rainfall (and runoff) events are poorly understood. Herein, we report the results of high-frequency sampling of microplastic particles (MPs) and fibers (MPFs) in the surface water of an urban river in Japan over the course of three rainfall events (i.e., light, moderate, and heavy rainfalls). The event mean concentrations (EMCs) of MPs amounted to 35,000 items/m3, 929,000 items/m3, and 331,000 items/m3; and the corresponding total loads were 0.5 kg, 19.8 kg, and 35.0 kg for light, moderate and heavy rainfalls, respectively. The inter-event total loads of MPs correlate well with the total rainfall, while the concentrations were linked with the number of antecedent dry days. The dynamic trends show that <2000 µm MPs displayed first flush effects during light to moderate rainfall events (>50% mass discharged with the initial 20-40% of flow). Small-sized MPs (10-40 µm) mobilized rapidly at lower rainfall intensities, whereas MPs over 2000 µm discharged immediately after the peak rainfall intensity. Moreover, <70 µm MPs depicted a surge following heavy rainfall events due to turbulent flow conditions reverting the deposited MPs into suspension. Overall, the three events increased the loads by 4-110 folds, and EMCs by 10-350 folds compared to the concentrations during dry weather while portraying a significant impact on 300-1000 µm MPs. The dynamics of MPs were correlated with those of suspended solids in river water, and the characteristics were comparable to the same of road dust sampled in Japan. Although the dynamic trends between MPs and MPFs in river water were comparable, MPFs were relatively less impacted by rain, likely due to the intervention of separate sewer systems in the study area.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Rivers , Water Movements , Water Pollutants, Chemical/analysis , Rain , Water , Environmental Monitoring/methods
14.
Environ Res ; 256: 119181, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38768884

ABSTRACT

Microplastic contamination has rapidly become a serious environmental issue, threatening marine ecosystems and human health. This review aims to not only understand the distribution, impacts, and transfer mechanisms of microplastic contamination but also to explore potential solutions for mitigating its widespread impact. This review encompasses the categorisation, origins, and worldwide prevalence of microplastics and methodically navigates the complicated structure of microplastics. Understanding the sources of minute plastic particles infiltrating water bodies worldwide is critical for successful removal. The presence and accumulation of microplastics has far reaching negative impacts on various marine creatures, eventually extending its implications to human health. Microplastics are known to affect the metabolic activities and the survival of microbial communities, phytoplankton, zooplankton, and fauna present in marine environments. Moreover, these microplastics cause developmental abnormalities, endocrine disruption, and several metabolic disorders in humans. These microplastics accumulates in aquatic environments through trophic transfer mechanisms and biomagnification, thereby disrupting the delicate balance of these ecosystems. The review also addresses the tactics for minimising the widespread impact of microplastics by suggesting practical alternatives. These include increasing public awareness, fostering international cooperation, developing novel cleanup solutions, and encouraging the use of environment-friendly materials. In conclusion, this review examines the sources and prevalence of microplastic contamination in marine environment, its impacts on living organisms and ecosystems. It also proposes various sustainable strategies to mitigate the problem of microplastics pollution. Also, the current challenges associated with the mitigation of these pollutants have been discussed and addressing these challenges require immediate and collective action for restoring the balance in marine ecosystems.


Subject(s)
Ecosystem , Microplastics , Water Pollutants, Chemical , Microplastics/analysis , Water Pollutants, Chemical/analysis , Nanotechnology , Animals , Environmental Monitoring/methods , Humans
15.
Environ Res ; 242: 117760, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38016499

ABSTRACT

The intensification of human activities all around the globe has led to the spread of micropollutants in high-mountain freshwater environments. We therefore aimed to assess the geospatial distribution and determine the potential sources of (total-) mercury (THg) and microplastics (MPs) in mountain freshwater ecosystems. To do so, we analyzed THg and MP concentrations in brown trout, biofilm, and sediments from lotic and lentic ecosystems in the Pyrenees - all subjected to different types of human pressure. Additionally, we assessed the potential impacts of these pollutants on fish, and explored the bioindication capacity of brown trout (Salmo trutta fario) and biofilm regarding THg and MP pollution. For the first time, we measured concentrations of MPs trapped in the matrix of freshwater biofilm. Our results suggest that THg in the Pyrenees might be explained by both legacy (regional) and distant sources, in combination with environmental characteristics such as the presence of peatlands or streamwater physicochemistry, while MPs in fish are linked to recent local pollution sources such as single-use plastics. In contrast, MPs in biofilm matrix and sediments indicate a combination of distant (i.e., atmospheric deposition) and recent local pollution sources. Moreover, hydrodynamics and plastic density likely control MP distribution in rivers. Based on Fulton's condition factor, we also found that higher THg concentrations caused a negative impact on fish health (K < 1), while no impact of MPs could be seen. Therefore, we suggest that brown trout and biofilm can serve as bioindicators of atmospheric deposition of THg in high-altitude lakes and that biofilm is a reliable bioindicator to assess MP pollution in remote environments. Brown trout may also act as a bioindicator of MP pollution, but only efficiently in more polluted areas.


Subject(s)
Mercury , Water Pollutants, Chemical , Animals , Humans , Mercury/analysis , Microplastics , Plastics , Ecosystem , Hydrology , Environmental Biomarkers , Water Pollutants, Chemical/analysis , Trout , Lakes , Human Activities , Environmental Monitoring/methods
16.
Environ Res ; 252(Pt 2): 118928, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38636646

ABSTRACT

Microplastics (MPs), as emerging indoor contaminants, have garnered attention due to their ubiquity and unresolved implications for human health. These tiny particles have permeated indoor air and water, leading to inevitable human exposure. Preliminary evidence suggests MP exposure could be linked to respiratory, gastrointestinal, and potentially other health issues, yet the full scope of their effects remains unclear. To map the overall landscape of this research field, a bibliometric analysis based on research articles retrieved from the Web of Science database was conducted. The study synthesizes the current state of knowledge and spotlights the innovative mitigation strategies proposed to curb indoor MP pollution. These strategies involve minimizing the MP emission from source, advancements in filtration technology, aimed at reducing the MP exposure. Furthermore, this research sheds light on cutting-edge methods for converting MP waste into value-added products. These innovative approaches not only promise to alleviate environmental burdens but also contribute to a more sustainable and circular economy by transforming waste into resources such as biofuels, construction materials, and batteries. Despite these strides, this study acknowledges the ongoing challenges, including the need for more efficient removal technologies and a deeper understanding of MPs' health impacts. Looking forward, the study underscores the necessity for further research to fill these knowledge gaps, particularly in the areas of long-term health outcomes and the development of standardized, reliable methodologies for MP detection and quantification in indoor settings. This comprehensive approach paves the way for future exploration and the development of robust solutions to the complex issue of microplastic pollution.


Subject(s)
Air Pollution, Indoor , Bibliometrics , Microplastics , Microplastics/analysis , Air Pollution, Indoor/prevention & control , Air Pollution, Indoor/analysis , Humans , Environmental Monitoring/methods
17.
Environ Res ; 245: 118055, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38154562

ABSTRACT

Airborne Microplastics (MPs), an emerging environmental issue, have gained recent attention due to their newfound presence in indoor environments. Utilizing the Web of Science database for literature collection, the paper presents a comprehensive review of airborne MPs including emission sources, assessment methods, exposure risks, and mitigation strategies. This review delves into the diverse sources and mechanisms influencing indoor airborne MP pollution, underscoring the complex interplay between human activities, ventilation systems, and the characteristics of indoor environments. Major sources include the abrasion of synthetic textiles and the deterioration of flooring materials, with factors like carpeting, airflow, and ventilation significantly impacting MP levels. Human activities, such as increased movement in indoor spaces and the intensive use of plastic-based personal protective equipment (PPE) post-pandemic, notably elevate indoor MP concentrations. The potential health impacts of airborne MPs are increasingly concerning, with evidence suggesting their role in respiratory, immune, and nervous system diseases. Despite this, there is a scarcity of information on MPs in diverse indoor environments and the inhalation risks associated with the frequent use of PPE. This review also stresses the importance of developing effective strategies to reduce MP emissions, such as employing HEPA-filtered vacuums, minimizing the use of synthetic textiles, and enhancing indoor ventilation. Several future research directions were proposed, including detailed temporal analyses of indoor MP levels, interactions of MP with other atmospheric pollutants, the transport dynamics of inhalable MPs (≤10 µm), and comprehensive human exposure risk assessments.


Subject(s)
Air Pollution, Indoor , Water Pollutants, Chemical , Humans , Microplastics , Plastics/analysis , Environmental Monitoring/methods , Air Pollution, Indoor/analysis , Environmental Pollution/analysis , Water Pollutants, Chemical/analysis
18.
Environ Res ; 255: 119177, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38788789

ABSTRACT

Various plastic materials are used in contact with agricultural soil, like mulching films, crop covers, weed controlling fabrics and nets. Polyethylene (PE) mulches have already been recognized as a significant source of plastic in soil and they have been shown to contain additives like phthalates, known as endocrine disruptors. However, other agricultural plastics are less studied, and little is known on the substances potentially released from them endangering biodiversity and the human health. This research aims to assess whether different agricultural plastics release additives into soil and to compare the release among various materials. We collected soil samples from 38 agricultural fields where conventional mulching films (PE), weed controlling fabrics (PP), biodegradable mulches based on polybutylene adipate terephthalate (PBAT), frost covers (PP), and oxo-degradable films (at least OXO-PE) were used. We analyzed the soils for phthalates and acetyl tributyl citrate (ATBC), used as plastic additives, and for polycyclic aromatic hydrocarbons (PAH) and dodecane that have high affinity for plastics. In comparison to the control soils, dibutylphthalate (DBP) and ATBC concentrations were significantly higher in soils mulched with PE and, partly, with biodegradable films. DBP concentration found in soil samples ranged between below the limit of quantification at a control site (1.5 µg kg-1) to 135 µg kg-1 at a site mulched with OXO-PE. The highest ATBC concentration, 22 ± 6 µg kg-1, was registered in a site mulched with PE, showing a statistically significant difference not only in comparison to the controls but also when compared to sites mulched with OXO-PE (p = 0.029) and PBAT (p < 0.009). On the contrary, the use of agricultural plastics did not influence the concentration of PAHs and dodecane. Our results indicate that agricultural plastics are a source of some organic chemicals to agricultural soils, including phthalates that are known for posing threat to soil ecosystem and human health.


Subject(s)
Agriculture , Biodegradable Plastics , Phthalic Acids , Soil Pollutants , Soil , Phthalic Acids/analysis , Soil Pollutants/analysis , Soil Pollutants/chemistry , Soil/chemistry , Biodegradable Plastics/chemistry , Environmental Monitoring/methods , Plastics/analysis , Plastics/chemistry
19.
Environ Res ; 252(Pt 3): 118894, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38599449

ABSTRACT

Microplastics, an invisible threat, are emerging as serious pollutants that continuously affect health by interrupting/contaminating the human cycle, mainly involving food, water, and air. Such serious scenarios raised the demand for developing efficient sensing systems to detect them at an early stage efficiently and selectively. In this direction, the proposed research reports an electrochemical hexamethylenetetramine (HMT) sensing utilizing a sensing platform fabricated using chitosan-magnesium oxide nanosheets (CHIT-MgO NS) nanocomposite. HMT is considered as a hazardous microplastic, which is used as an additive in plastic manufacturers and has been selected as a target analyte. To fabricate sensing electrodes, a facile co-precipitation technique was employed to synthesize MgO NS, which was further mixed with 1% CHIT solution to form a CHIT_MgO NS composite. Such prepared nanocomposite solution was then drop casted to an indium tin oxide (ITO) to fabricate CHIT_MgO NS/ITO sensing electrode to detect HMT electrochemically using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. To determine the limit of detection (LOD) and sensitivity, DPV was performed. The resulting calibrated curve for HMT, ranging from 0.5 µM to 4.0 µM, exhibited a sensitivity of 12.908 µA (µM)-1 cm-2 with a detection limit of 0.03 µM and a limit of quantitation (LOQ) of 0.10 µM. Further, the CHIT_MgO NS/ITO modified electrode was applied to analyze HMT in various real samples, including river water, drain water, packaged water, and tertiary processed food. The results demonstrated the method's high sensitivity and suggested its potential applications in the field of microplastic surveillance, with a focus on health management.


Subject(s)
Chitosan , Electrochemical Techniques , Magnesium Oxide , Microplastics , Chitosan/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Microplastics/analysis , Magnesium Oxide/chemistry , Magnesium Oxide/analysis , Water Pollutants, Chemical/analysis , Nanostructures/chemistry , Nanocomposites/chemistry , Limit of Detection , Environmental Monitoring/methods
20.
Environ Res ; 250: 118494, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38365061

ABSTRACT

Microplastics (MPs), the emerging pollutants appeared in water environment, have grabbed significant attention from researchers. The quantitative method of spherical MPs is the premise and key for the study of MPs in laboratory researches. However, the manual counting is time-consuming, and the existing semi-automated analysis lacked of robustness. In this study, a highly accurate quantification method for spherical MPs, called VS120-MC was proposed. VS120-MC consisted of the digital slide scanner VS120 and the MPs image processing software, MPs-Counter. The full-area scanning photography was employed to fundamentally avoid the error caused by random or partition sampling modes. To accomplish high-performance batch recognition, the Weak-Circle Elimination Algorithm (WEA) and the Variable Coefficient Threshold (VCT) was developed. Finally, lower than 0.6% recognition error rate of simulated images with different aggregated indices was achieved by MPs-Counter with fast processing speed (about 2 s/image). The smallest size for VS120-MC to detect was 1 µm. And the applicability of VS120-MC in real water body was investigated. The measured value of 1 µm spherical MPs in ultra-pure water and two kinds of polluted water after digestion showed a good linear relationship with the Manual measurements (R2 = 0.982,0.987 and 0.978, respectively). For 10 µm spherical MPs, R2 reached 0.988 for ultra-pure water and 0.984 for both of the polluted water. MPs-Counter also showed robustness when using the same set of parameters processing the images with different conditions. Overall, VS120-MC eliminated the error caused by traditional photography and realized an accurate, efficient, stable image processing tool, providing a reliable alternative for the quantification of spherical MPs.


Subject(s)
Environmental Monitoring , Image Processing, Computer-Assisted , Microplastics , Water Pollutants, Chemical , Microplastics/analysis , Image Processing, Computer-Assisted/methods , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Environmental Monitoring/instrumentation , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL