Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 224
Filter
Add more filters

Publication year range
1.
Nature ; 623(7986): 340-346, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37853124

ABSTRACT

Understanding the effects of cash crop expansion on natural forest is of fundamental importance. However, for most crops there are no remotely sensed global maps1, and global deforestation impacts are estimated using models and extrapolations. Natural rubber is an example of a principal commodity for which deforestation impacts have been highly uncertain, with estimates differing more than fivefold1-4. Here we harnessed Earth observation satellite data and cloud computing5 to produce high-resolution maps of rubber (10 m pixel size) and associated deforestation (30 m pixel size) for Southeast Asia. Our maps indicate that rubber-related forest loss has been substantially underestimated in policy, by the public and in recent reports6-8. Our direct remotely sensed observations show that deforestation for rubber is at least twofold to threefold higher than suggested by figures now widely used for setting policy4. With more than 4 million hectares of forest loss for rubber since 1993 (at least 2 million hectares since 2000) and more than 1 million hectares of rubber plantations established in Key Biodiversity Areas, the effects of rubber on biodiversity and ecosystem services in Southeast Asia could be extensive. Thus, rubber deserves more attention in domestic policy, within trade agreements and in incoming due-diligence legislation.


Subject(s)
Conservation of Natural Resources , Forests , Geographic Mapping , Rubber , Satellite Imagery , Asia, Southeastern , Biodiversity , Cloud Computing , Conservation of Natural Resources/statistics & numerical data , Conservation of Natural Resources/trends
2.
Arch Microbiol ; 206(4): 161, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483627

ABSTRACT

Brazilian biomes are important sources for environmental microorganisms, including efficient metabolic machineries, like actinomycetes. These bacteria are known for their abilities to produce many bioactive compounds, including enzymes with multiple industrial applications. The present work aimed to evaluate lignocellulolytic abilities of actinomycetes isolated from soil and rhizosphere samples collected at Caatinga, Atlantic and Amazon Forest. Laccase (Lac), lignin peroxidase (LiP), manganese peroxidase (MnP) and cellulase were evaluated for their efficiency. These enzymes have an essential role in lignin decomposition, through oxidation of phenolic and non-phenolic compounds, as well as enzymatic hydrolysis of vegetal biomass. In this sense, a total of 173 actinomycetes were investigated. Eleven (11) of them were selected by their enzymatic performance. The actinomycete AC166 displayed some activity in all analysed scenarios in terms of Lac, MnP and LiP activity, while AC171 was selected as the most promising strain, showing the following activities: 29.7 U.L-1 for Lac; 2.5 U.L-1 for LiP and 23 U.L-1 for MnP. Cellulolytic activities were evaluated at two pH conditions, 4.8 and 7.4, obtaining the following results: 25 U.L-1 and 71 U.L-1, respectively. Thermostability (4, 30 and 60 o C) and salinity concentrations (0 to 4 M) and pH variation (2.0 to 9.0) stabilities of the obtained LiP and Lac enzymatic extracts were also verified. The actinomycete strain AC171 displayed an adaptable response in distinct pH and salt profiles, indicating that bacterial LiP was some halophilic type. Additionally, the strain AC149 produced an alkali and extreme halophilic lignin peroxidase, which are promising profiles for their future application under lignocellulosic biomass at bioethanol biorefineries.


Subject(s)
Laccase , Lignin , Lignin/metabolism , Laccase/metabolism , Oxidation-Reduction , Forests , Brazil
3.
Naturwissenschaften ; 111(1): 10, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353735

ABSTRACT

The Ulm-Westtangente locality has yielded the most abundant vertebrate fauna from the Aquitanian stage in Germany. Its dating to the Mammal Neogene Zone 2a, a turnover in Cenozoic climate, makes it a crucial source for the understanding of faunal, paleoecological and paleoenvironmental specifics of the European Aquitanian. However, while most taxa from Ulm-Westtangente have been studied, little to no research has been conducted on the large herbivores, particularly on the two rhinocerotids Mesaceratherium paulhiacense and Protaceratherium minutum. Here, we used a multi-proxy approach to investigate the paleoecology of these two species. The remains of the smaller species P. minutum (438 to 685 kg) are twice as abundant as those of the larger M. paulhiacense (1389 to 2327 kg), but both display a similar age structure (~ 10% of juveniles, 20% of subadults and 70% of adults), mortality curves, and mild prevalence of hypoplasia (~ 17%). Results from dental mesowear, microwear, and carbon isotopes indicate different feeding preferences: both were C3 feeders but M. paulhiacense had a more abrasive diet and was probably a mixed feeder. Our study on rhinocerotids also yielded new paleoenvironmental insights, such as the mean annual temperature (15.8 °C) and precipitation (317 mm/year) suggesting rather warm and dry conditions.


Subject(s)
Forests , Herbivory , Animals , Germany , Carbon Isotopes , Temperature , Mammals
4.
Environ Sci Technol ; 58(4): 1793-1801, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38228319

ABSTRACT

Greenhouse gas emissions from building construction─i.e., the embodied carbon in buildings─are a significant and growing contributor to the climate crisis. However, our understanding of how to decarbonize building construction remains limited. This study shows that net-zero embodied carbon in buildings is achievable across Japan by 2050 using currently available technologies: decarbonized electricity supply, low-carbon steel, low-carbon concrete, increased timber structures, optimized design, and enhanced building lifespan. The largest emissions savings would come from increased use of timber structures, with annual savings of up to ∼35% by 2050, even in cases where timber replaces low-carbon steel and concrete. Moreover, we show that an expanded domestic timber supply, coupled with responsible reforestation, could improve forest carbon uptake by up to ∼60% compared to the business-as-usual scenario, without the need to increase forest area. This is achieved through a forest-city carbon cycle that transfers carbon stocks of mature trees to cities as building materials and rejuvenates forests through reforestation. Collectively, our analysis demonstrates that the decarbonization of building construction depends not on future technological innovation, but rather on how we design and use buildings with the options we already have.


Subject(s)
Carbon , Trees , Forests , Construction Materials , Steel
5.
Macromol Rapid Commun ; 45(3): e2300524, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37903330

ABSTRACT

Polyamides (PA) are among the most essential and versatile polymers due to their outstanding characteristics, for example, high chemical resistance and temperature stability. Furthermore, nature-derived monomers can introduce hard-to-synthesize structures into the PAs for unique polymer properties. Pinene, as one of the most abundant terpenes in nature and its presumable stability-giving bicyclic structure, is therefore highly promising. This work presents simple anionic ring-opening polymerizations of ß-pinene lactam (AROP) in-bulk and in solution. PAs with high molecular weights, suitable for further processing, are produced. Their good mechanical, thermal (Td s up to 440 °C), and transparent appearance render them promising high-performance biomaterials. In the following, the suitability of different initiators is discussed. Thereby, it is found that NaH is the most successful for in-bulk polymerization, with a degree of polymerization (DP) of about 322. For solution-AROP, iPrMgCl·LiCl is successfully used for the first time, achieving DPs up to about 163. The obtained PAs are also hot-pressed, and the dynamic mechanical properties are analyzed.


Subject(s)
Bicyclic Monoterpenes , Lactams , beta-Lactams , Lactams/chemistry , Nylons/chemistry , Molecular Weight , Polymers/chemistry , Forests , Polymerization
6.
Oecologia ; 204(3): 641-651, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38472472

ABSTRACT

In ecosystems, the rates of resource consumption by animals drive the flows of matter and energy. Consumption rates are known to vary according to consumer energy requirements, resource nutrient content and mechanical properties. The aim of our study is to determine how mechanical constraints, compared to energetic and nutritional constraints, explain the variation in leaf litter consumption rates by macrodetritivores. In particular, we focus on the impact of litter toughness. To this end, we propose a non-linear model describing leaf litter consumption rates of detritivore as a function of litter toughness. We also investigate a possible match between bite force and litter toughness, since consumer-resource co-occurrence is thought to be driven by the match between invertebrate mandibular traits and resource toughness. Our study was designed as follows: leaf litter from oak and hornbeam was exposed to field physical and microbial decomposition in aquatic and terrestrial ecosystems for selected time periods before it was offered to eight macrodetritivore taxa (three forest stream taxa and five forest soil taxa) in no-choice laboratory feeding experiments. Our findings show that, compared to energetic and nutritional constraints, mechanical traits have a greater impact on litter consumption rate by detritivores. After subtracting the contribution of the detritivore body mass, we report that litter consumption rates depend primarily on litter toughness. A sigmoid function is best suited to characterize the relationship between mass-independent consumption rate and litter toughness. We note that the parameters of our sigmoid model are taxon-specific, suggesting biomechanical thresholds and biological differences among taxa. Interestingly, we found no correlation with detritivore bite force, suggesting that food processing by detritivores does not only depend on mandibles strength.


Subject(s)
Ecosystem , Invertebrates , Animals , Forests , Rivers , Plant Leaves
7.
Nature ; 623(7986): 256-257, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37875686
8.
J Environ Manage ; 356: 120710, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38547822

ABSTRACT

In tropical regions, shifting from forests and traditional agroforestry to intensive plantations generates conflicts between human welfare (farmers' demands and societal needs) and environmental protection. Achieving sustainability in this transformation will inevitably involve trade-offs between multiple ecological and socioeconomic functions. To address these trade-offs, our study used a new methodological approach allowing the identification of transformation scenarios, including theoretical landscape compositions that satisfy multiple ecological functions (i.e., structural complexity, microclimatic conditions, organic carbon in plant biomass, soil organic carbon and nutrient leaching losses), and farmers needs (i.e., labor and input requirements, total income to land, and return to land and labor) while accounting for the uncertain provision of these functions and having an actual potential for adoption by farmers. We combined a robust, multi-objective optimization approach with an iterative search algorithm allowing the identification of ecological and socioeconomic functions that best explain current land-use decisions. The model then optimized the theoretical land-use composition that satisfied multiple ecological and socioeconomic functions. Between these ends, we simulated transformation scenarios reflecting the transition from current land-use composition towards a normative multifunctional optimum. These transformation scenarios involve increasing the number of optimized socioeconomic or ecological functions, leading to higher functional richness (i.e., number of functions). We applied this method to smallholder farms in the Jambi Province, Indonesia, where traditional rubber agroforestry, rubber plantations, and oil palm plantations are the main land-use systems. Given the currently practiced land-use systems, our study revealed short-term returns to land as the principal factor in explaining current land-use decisions. Fostering an alternative composition that satisfies additional socioeconomic functions would require minor changes ("low-hanging fruits"). However, satisfying even a single ecological indicator (e.g., reduction of nutrient leaching losses) would demand substantial changes in the current land-use composition ("moonshot"). This would inevitably lead to a profit decline, underscoring the need for incentives if the societal goal is to establish multifunctional agricultural landscapes. With many oil palm plantations nearing the end of their production cycles in the Jambi province, there is a unique window of opportunity to transform agricultural landscapes.


Subject(s)
Carbon , Soil , Humans , Soil/chemistry , Carbon/analysis , Rubber , Indonesia , Forests , Agriculture , Conservation of Natural Resources
9.
Environ Microbiol ; 25(11): 2351-2367, 2023 11.
Article in English | MEDLINE | ID: mdl-37403552

ABSTRACT

We investigated the changes in microbial community diversities and functions in natural downed wood at different decay stages in a natural oak forest in the Italian Alps, through metagenomics analysis and in vitro analysis. Alfa diversity of bacterial communities was affected by the decay stage and log characteristics, while beta diversity was mainly driven by log diameter. Fungal and archaeal beta diversities were affected by the size of the sampled wood (log diameter), although, fungi were prominently driven by wood decay stage. The analysis of genes targeting cell wall degradation revealed higher abundances of cellulose and pectin-degrading enzymes in bacteria, while in fungi the enzymes targeting cellulose and hemicellulose were more abundant. The decay class affected the abundance of single enzymes, revealing a shift in complex hydrocarbons degradation pathways along the decay process. Moreover, we found that the genes related to Coenzyme M biosynthesis to be the most abundant especially at early stages of wood decomposition while the overall methanogenesis did not seem to be influenced by the decay stage. Intra- and inter-kingdom interactions between bacteria and fungi revealed complex pattern of community structure in response to decay stage possibly reflecting both direct and indirect interactions.


Subject(s)
Fungi , Microbiota , Fungi/genetics , Forests , Wood/microbiology , Microbiota/genetics , Bacteria/genetics , Cellulose
10.
Glob Chang Biol ; 29(16): 4605-4619, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37293800

ABSTRACT

Ectomycorrhizal (ECM) functional traits related to nutrient acquisition are impacted by nitrogen (N) deposition. However, less is known about whether these nutrient-acquisition traits associated with roots and hyphae differentially respond to increased N deposition in ECM-dominated forests with different initial N status. We conducted a chronic N addition experiment (25 kg N ha-1 year-1 ) in two ECM-dominated forests with contrasting initial N status, that is, a Pinus armandii forest (with relatively low N availability) and a Picea asperata forest (with relatively high N availability), to assess nutrient-mining and nutrient-foraging strategies associated with roots and hyphae under N addition. We show that nutrient-acquisition strategies of roots and hyphae differently respond to increased N addition. Root nutrient-acquisition strategies showed a consistent response to N addition, regardless of initial forest nutrient status, shifting from organic N mining toward inorganic N foraging. In contrast, the hyphal nutrient-acquisition strategy showed diverse responses to N addition depending on initial forest N status. In the Pinus armandii forest, trees increased belowground carbon (C) allocation to ECM fungi thus enhancing hyphal N-mining capacity under increased N availability. By comparison, in the Picea asperata forest, ECM fungi enhanced both capacities of P foraging and P mining in response to N-induced P limitation. In conclusion, our results demonstrate that ECM fungal hyphae exhibit greater plasticity in nutrient-mining and nutrient-foraging strategies than roots do in response to changes of nutrient status induced by N deposition. This study highlights the importance of ECM associations in tree acclimation and forest function stability under changing environments.


Subject(s)
Mycorrhizae , Picea , Pinus , Plant Roots/microbiology , Hyphae , Nitrogen , Plastics , Soil , Forests , Mycorrhizae/physiology , Trees/physiology , Soil Microbiology
11.
Microb Ecol ; 86(2): 1189-1199, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36123554

ABSTRACT

Litter decomposition is the main source of soil organic carbon (SOC) pool, regarding as an important part of terrestrial ecosystem C dynamics. The turnover of SOC is mainly regulated by extracellular enzymes secreted by microorganisms. However, the response mechanism of soil C-degrading enzymes and SOC in litter decomposition remains unclear. To clarify how SOC fraction dynamics respond to C-degrading enzymes in litter decomposition, we used field experiments to collect leaf litter and SOC fractions from the underlying layer in Robinia pseudoacacia plantations on the Loess Plateau. Our results showed that SOC, easily oxidizable organic C, dissolved organic C, and microbial biomass C increased significantly during the decomposition process. Litter decomposition significantly decreased soil hydrolase activity, but slightly increased oxidase activity. Correlation analysis results showed that SOC fractions were significantly positively correlated with the litter mass, lignin, soil moisture, and oxidase activity, but significantly negatively correlated with cellulose content and soil pH. Partial least squares path models revealed that soil C-degrading enzymes can directly or indirectly affect the changes of soil C fractions. The most direct factors affecting the SOC fractions of topsoil during litter decomposition were litter lignin and cellulose degradation, soil pH, and C-degrading enzymes. Furthermore, regression analysis showed that the decrease of SOC stability in litter decomposition was closely related to the decrease of soil hydrolase to oxidase ratio. These results highlighted that litter degradation-induced changes in C-degrading enzyme activity significantly affected SOC fractions. Furthermore, the distribution of soil hydrolases and oxidases affected the stability of SOC during litter decomposition. These findings provided a theoretical framework for a more comprehensive understanding of C turnover and stabilization mechanisms between plant and soil.


Subject(s)
Robinia , Soil , Soil/chemistry , Ecosystem , Carbon/metabolism , Lignin/metabolism , Cellulose/metabolism , Hydrolases/metabolism , Soil Microbiology , Oxidoreductases , Forests , China
12.
Oecologia ; 201(1): 199-212, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36520222

ABSTRACT

There is often a vertical stratification of the vegetation in tropical forests, where each forest stratum has a unique set of environmental conditions, including marked differences in habitat heterogeneity, physical complexity, and microclimate. Additionally, many tropical forests are highly seasonal, and we need to consider the temporal variation in environmental conditions when assessing the functional aspects of their organisms. Here, we tested the hypothesis that vertical stratification and seasonality shape tropical ants' functional ecology and that there are differences in the functional trait diversity and composition between arboreal and ground-dwelling ant communities. We collected ants in the arboreal and ground strata in the rainy and dry seasons in six different areas, measuring seven morphological traits to characterize their functional ecology and diversity. Irrespective of the season, we found a distinct functional composition between arboreal and ground-dwelling ants and a higher functional richness on the ground. However, ground ants were more functionally redundant than arboreal ants. The differences in functional richness and redundancy between ant inhabiting strata and season could also be observed in the community-weighted mean traits: arboreal and ground ant traits can be distinguished in Weber's length, mandible length, eye length, and eye position on the head capsule. The differences in these functional traits are mainly related to the ants' feeding habits and the complexity of their foraging substrates. Overall, by providing the first systematic comparison of continuous traits between arboreal and ground-dwelling ants, our study opens new investigation paths, indicating important axes of functional diversification of tropical ants.


Subject(s)
Ants , Trees , Animals , Tropical Climate , Ecosystem , Forests
13.
Sensors (Basel) ; 23(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37571453

ABSTRACT

In September 2017, Hurricane Irma made landfall in South Florida, causing a great deal of damage to mangrove forests along the southwest coast. A combination of hurricane strength winds and high storm surge across the area resulted in canopy defoliation, broken branches, and downed trees. Evaluating changes in mangrove forest structure is significant, as a loss or change in mangrove forest structure can lead to loss in the ecosystems services that they provide. In this study, we used lidar remote sensing technology and field data to assess damage to the South Florida mangrove forests from Hurricane Irma. Lidar data provided an opportunity to investigate changes in mangrove forests using 3D high-resolution data to assess hurricane-induced changes at different tree structure levels. Using lidar data in conjunction with field observations, we were able to model aboveground necromass (AGN; standing dead trees) on a regional scale across the Shark River and Harney River within Everglades National Park. AGN estimates were higher in the mouth and downstream section of Shark River and higher in the downstream section of the Harney River, with higher impact observed in Shark River. Mean AGN estimates were 46 Mg/ha in Shark River and 38 Mg/ha in Harney River and an average loss of 29% in biomass, showing a significant damage when compared to other areas impacted by Hurricane Irma and previous disturbances in our study region.


Subject(s)
Cyclonic Storms , Wetlands , Ecosystem , Florida , Forests
14.
J Environ Manage ; 338: 117820, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37003227

ABSTRACT

The interactions between local tides and river discharges are crucial in the processes related to the recruitment of mangrove propagules in estuarine systems. This investigation aimed to determine the causes of the recent natural recruitment and expansion of Laguncularia racemosa in mudflats within an ephemeral inlet in Mexico. We conducted a fluvial and coastal geomorphology assessment with spaceborne and UAV-based images. We deployed and recorded continuous data loggers in the estuarine system to assess water level and salinity. Depending on the available data, we used a combination of cloud-computing Google Earth Engine, UAV-Digital Surface Models, LiDAR, Google Earth images, and biophysical variables to monitor mangrove forests from 2005 to 2022. When the inlet is open, the estuarine system presents a full tidal range (∼1-1.5 m) with a strong salinity gradient (0-35 mS/cm), in contrast to the strong freshwater influence and minimal water level variability (<10 cm) that prevails for three months when the inlet is closed. Once the mouth of the river closes, there is considerable sediment accumulation, creating mudflat areas adjacent to the mangrove forests where Laguncularia racemosa propagules begin to establish under minimal water level variability and oligohaline conditions. After 16 years, the new forest expanded by 12.3 ha, presenting a very high density (10000 stems/ha), a considerable basal area (54-63 m2/ha), and a maximum canopy height of 15.8 m, which largely surpasses that of other semiarid Laguncularia racemosa forests within permanent open-inlet systems or even in ephemeral inlets with different hydrological conditions. Our study will help to understand the causes of natural Laguncularia racemosa recruitment in extremely dynamic systems.


Subject(s)
Bays , Combretaceae , Remote Sensing Technology , Wetlands , Forests , Remote Sensing Technology/methods , Water
15.
Environ Monit Assess ; 195(2): 348, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36719637

ABSTRACT

The present study focuses on the spread of rubber monoculture in the state of Tripura during past three decades (1990-2021) in the northeast region of India which is known for its rich biodiversity, shifting cultivation, and extensive forest dynamics. Earth observation (EO) data of seven time periods from Landsat missions (1990, 1995, 2000, 2004, and 2009) and Sentinel-2 (2016 and 2021) were the main source for mapping and were supplemented with MODIS-EVI temporal spectral profiles, GEDI-derived vegetation heights (2019), and Google Earth high-resolution historical images for additional cues to support discrimination, mapping, and accuracy assessment. The methodology for rubber used its unique phenology from spectral-temporal profile and multi-year comparison of patches and their dynamics for age-class mapping. The results indicate that in the state of Tripura (geographic area 1.08 Mha), the area under rubber increased from 0.3% in 1990 to 8.9% of the geographic area in 2021. The overall classification accuracy for the maps created for the years 1990, 1995, 2000, 2004, 2009, 2016, and 2021 was 84.2%, 83.9%, 84.8%, 88.0%, 86.0%, 86.7%, and 89.5%, respectively. New areas under rubber originated from various land cover classes including open forests, shifting cultivation lands, and scrub. Recent expansion has resulted in 84.3% of rubber plantations under the 10-year age class. Implications of this transformation of the natural landscape, biodiversity and biomass, and carbon pool assessment are discussed.


Subject(s)
Environmental Monitoring , Rubber , Environmental Monitoring/methods , Forests , Biodiversity , India
16.
Plant J ; 107(4): 1040-1055, 2021 08.
Article in English | MEDLINE | ID: mdl-34053139

ABSTRACT

The hyperaccumulator Pycnandra acuminata is a New Caledonian rainforest tree known to have the highest concentration of nickel in any living organism, with 25 wt% nickel in its latex. All trees (with a diameter of >10 cm) and soil profiles in a 0.25-hectare permanent plot were sampled to assess the biogeochemical compartmentalisation of nickel in a dense stand of P. acuminata trees. Nickel stable isotope analysis permitted insights into the cycling of nickel in this ecosystem. The total tree biomass of the plot was calculated to be 281 tonnes ha-1 , which contained 0.44 kg of cobalt, 49.1 kg of manganese, 257 kg of nickel and 6.76 kg of zinc. Nickel stable isotope analysis identified the biotic origin of the nickel in the soil upper layers, with P. acuminata shoots enriched in lighter nickel isotopes. The δ60 Ni latex signature suggests that long-distance transport, radial xylem and phloem loading are at play in P. acuminata.


Subject(s)
Forests , Nickel/analysis , Nickel/pharmacokinetics , Sapotaceae/metabolism , Soil/chemistry , Biomass , Isotopes/analysis , Latex/chemistry , Metals, Heavy/analysis , New Caledonia , Plant Leaves/chemistry , Sapotaceae/drug effects , Trace Elements/analysis , Trace Elements/pharmacokinetics , Trees , Tropical Climate , Xylem/chemistry
17.
Am Nat ; 200(4): E141-E159, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36150196

ABSTRACT

AbstractPopulation response functions based on climatic and phenotypic data from common gardens have long been the gold standard for predicting quantitative trait variation in new environments. However, prediction accuracy might be enhanced by incorporating genomic information that captures the neutral and adaptive processes behind intrapopulation genetic variation. We used five clonal common gardens containing 34 provenances (523 genotypes) of maritime pine (Pinus pinaster Aiton) to determine whether models combining climatic and genomic data capture the underlying drivers of height growth variation and thus improve predictions at large geographical scales. The plastic component explained most of the height growth variation, probably resulting from population responses to multiple environmental factors. The genetic component stemmed mainly from climate adaptation and the distinct demographic and selective histories of the different maritime pine gene pools. Models combining climate of origin and gene pool of the provenances as well as height-associated positive-effect alleles (PEAs) captured most of the genetic component of height growth and better predicted new provenances compared with the climate-based population response functions. Regionally selected PEAs were better predictors than globally selected PEAs, showing high predictive ability in some environments even when included alone in the models. These results are therefore promising for the future use of genome-based prediction of quantitative traits.


Subject(s)
Pinus , Trees , Forests , Genomics , Pinus/genetics , Plastics , Trees/genetics
18.
Glob Chang Biol ; 28(13): 4194-4210, 2022 07.
Article in English | MEDLINE | ID: mdl-35445477

ABSTRACT

Increasing phosphorus (P) inputs induced by anthropogenic activities have increased P availability in soils considerably, with dramatic effects on carbon (C) cycling and storage. However, the underlying mechanisms via which P drives plant and microbial regulation of soil organic C (SOC) formation and stabilization remain unclear, hampering the accurate projection of soil C sequestration under future global change scenarios. Taking the advantage of an 8-year field experiment with increasing P addition levels in a subalpine forest on the eastern Tibetan Plateau, we explored plant C inputs, soil microbial communities, plant and microbial biomarkers, as well as SOC physical and chemical fractions. We found that continuous P addition reduced fine root biomass, but did not affect total SOC content. P addition decreased plant lignin contribution to SOC, primarily from declined vanillyl-type phenols, which was coincided with a reduction in methoxyl/N-alkyl C by 2.1%-5.5%. Despite a decline in lignin decomposition due to suppressed oxidase activity by P addition, the content of lignin-derived compounds decreased because of low C input from fine roots. In contrast, P addition increased microbial (mainly fungal) necromass and its contribution to SOC due to the slower necromass decomposition under reduced N-acquisition enzyme activity. The larger microbial necromass contribution to SOC corresponded with a 9.1%-12.4% increase in carbonyl C abundance. Moreover, P addition had no influence on the slow-cycing mineral-associated organic C pool, and SOC chemical stability indicated by aliphaticity and recalcitrance indices. Overall, P addition in the subalpine forest over 8 years influenced SOC composition through divergent alterations of plant- and microbial-derived C contributions, but did not shape SOC physical and chemical stability. Such findings may aid in accurately forecasting SOC dynamics and their potential feedbacks to climate change with future scenarios of increasing soil P availability in Earth system models.


Subject(s)
Carbon , Soil , Forests , Lignin , Phosphorus , Soil Microbiology
19.
Environ Sci Technol ; 56(4): 2747-2759, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35104105

ABSTRACT

Peatlands of the Northern Hemisphere and Central European coniferous forests experience significant environmental change. The resultant browning of surface waters, that is, elevated concentrations of dissolved organic matter (DOM) and metals, is of interest in the context of the global C cycle, peatland and forest management, and water treatment. In an attempt to identify the causes of this process in the Harz Mountains (Central Germany), we studied the spatiotemporal variations in DOM molecular composition (thermally assisted hydrolysis and methylation combined with GC-MS) and metal concentrations in headwater stream samples. We found strong relationships between DOM and metals and seasonal variations in the DOM quality and tentatively DOM-metal binding mode: during summer base flow, DOM and metal concentrations are low, and all elements other than the alkali and alkaline earth metals (Ca, Mg, Sr, K, and Na) are positively correlated to DOM, whereas during spring and autumn (high discharge), only metals with strong affinity for DOM (Fe, As, Cu, Cr, Pb, and Ti), but not weakly binding ones (Al, Cd, La, Mn, Ni, Zn, and Zr), are correlated to DOM, indicative of selectivity in DOM-metal interactions. The products of polyphenols are the key ingredients of the DOM-metal complexes. We argue the importance of spruce lignin-derived vanillic acid moieties, which are involved in weak (all seasons) and strong, multidentate and/or colloidal, binding (spring and autumn) of metals. Considering the ongoing spruce forest dieback and climate change acceleration, it is tempting to conclude that spruce necromass and forest soils may release vast amounts of lignin-derived DOM and associated metals to headwater streams. This would have significant implications for forest soil C stocks and the management of connected drinking water reservoirs.


Subject(s)
Dissolved Organic Matter , Lignin , Picea , Environmental Monitoring , Forests , Metals/analysis , Molecular Probes , Soil
20.
Oecologia ; 200(1-2): 247-257, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36129577

ABSTRACT

Even though drought impacts on tree physiology have been identified, whether drought affects leaf litter chemistry that, in turn, influences litter decay rates is still poorly understood. We compared litter quality and decomposition for two cohorts of leaves from five co-occurring seasonally deciduous tree species: Acer saccharum, Tilia americana, Quercus rubra, Quercus alba, and Ostrya virginiana. One cohort experienced a growing-season drought, and the other cohort came from the same trees in the ensuing, post-drought growing season. Leaf litter production was greater for drought litter than post-drought litter for all five species. Specific leaf area and nitrogen concentrations were 20% greater for the drought cohort than the post-drought cohort. Concentrations of non-structural carbohydrates were about 14% greater for the drought cohort, except for greater values for post-drought A. saccharum litter. Pectin in the middle lamella of leaf litter was 31% lower for the drought cohort compared to post-drought cohort. We found few differences in litter decay rates between drought and post-drought cohorts, although Q. rubra litter had more decomposition for the post-drought cohort than the drought cohort, whereas A. saccharum litter had more decomposition for the drought cohort than the post-drought cohort. Leaf litter decay rates for the drought cohort were related to litter nitrogen and lignin concentrations, whereas decay rates for the post-drought cohort were related to litter carbohydrate concentrations. Our findings suggest that the role of drought events on seasonally deciduous forest ecosystems must recognize species-specific, idiosyncratic responses in leaf litter quality and decomposition.


Subject(s)
Ecosystem , Quercus , Droughts , Forests , Humans , Lignin/analysis , Nitrogen/analysis , Pectins/analysis , Plant Leaves/chemistry , Trees/physiology
SELECTION OF CITATIONS
SEARCH DETAIL