Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.963
Filter
Add more filters

Publication year range
1.
Nature ; 628(8009): 776-781, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658683

ABSTRACT

Dissolved organic matter (DOM) is one of the most complex, dynamic and abundant sources of organic carbon, but its chemical reactivity remains uncertain1-3. Greater insights into DOM structural features could facilitate understanding its synthesis, turnover and processing in the global carbon cycle4,5. Here we use complementary multiplicity-edited 13C nuclear magnetic resonance (NMR) spectra to quantify key substructures assembling the carbon skeletons of DOM from four main Amazon rivers and two mid-size Swedish boreal lakes. We find that one type of reaction mechanism, oxidative dearomatization (ODA), widely used in organic synthetic chemistry to create natural product scaffolds6-10, is probably a key driver for generating structural diversity during processing of DOM that are rich in suitable polyphenolic precursor molecules. Our data suggest a high abundance of tetrahedral quaternary carbons bound to one oxygen and three carbon atoms (OCqC3 units). These units are rare in common biomolecules but could be readily produced by ODA of lignin-derived and tannin-derived polyphenols. Tautomerization of (poly)phenols by ODA creates non-planar cyclohexadienones, which are subject to immediate and parallel cycloadditions. This combination leads to a proliferation of structural diversity of DOM compounds from early stages of DOM processing, with an increase in oxygenated aliphatic structures. Overall, we propose that ODA is a key reaction mechanism for complexity acceleration in the processing of DOM molecules, creation of new oxygenated aliphatic molecules and that it could be prevalent in nature.


Subject(s)
Carbon , Fresh Water , Carbon/analysis , Carbon/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Fresh Water/chemistry , Lakes/chemistry , Lignin/chemistry , Oxidation-Reduction , Oxygen/chemistry , Polyphenols/chemistry , Rivers/chemistry , Sweden , Tannins/chemistry , Carbon Cycle
2.
Environ Sci Technol ; 58(24): 10776-10785, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38838101

ABSTRACT

Rivers have been recognized as the primary conveyors of microplastics to the oceans, and seaward transport flux of riverine microplastics is an issue of global attention. However, there is a significant discrepancy in how microplastic concentration is expressed in field occurrence investigations (number concentration) and in mass flux (mass concentration). Of urgent need is to establish efficient conversion models to correlate these two important paradigms. Here, we first established an abundant environmental microplastic dataset and then employed a deep neural residual network (ResNet50) to successfully separate microplastics into fiber, fragment, and pellet shapes with 92.67% accuracy. We also used the circularity (C) parameter to represent the surface shape alteration of pellet-shaped microplastics, which always have a more uneven surface than other shapes. Furthermore, we added thickness information to two-dimensional images, which has been ignored by most prior research because labor-intensive processes were required. Eventually, a set of accurate models for microplastic mass conversion was developed, with absolute estimation errors of 7.1, 3.1, 0.2, and 0.9% for pellet (0.50 ≤ C < 0.75), pellet (0.75 ≤ C ≤ 1.00), fiber, and fragment microplastics, respectively; environmental samples have validated that this set is significantly faster (saves ∼2 h/100 MPs) and less biased (7-fold lower estimation errors) compared to previous empirical models.


Subject(s)
Environmental Monitoring , Microplastics , Water Pollutants, Chemical , Rivers/chemistry
3.
Environ Sci Technol ; 58(12): 5491-5499, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38478875

ABSTRACT

Measured microplastic concentrations in river surface waters fluctuate greatly. This variability is affected by season and is codriven by factors, such as sampling methodologies, sampling site, or sampling position within site. Unfortunately, most studies comprise single-instance measurements, whereas extended sampling periods are better suited to assessing the relevance of such factors. Moreover, microplastic concentrations in riverine water column remain underexplored. Similar to the oceans, however, this compartment likely holds significant amounts of microplastics. By representatively sampling the entire Rhine River cross-section near Basel through five sampling points over 22 months, we found a median microplastic (50-3000 µm) concentration of 4.48 n m-3, and estimated a widely ranging load between 4.04 × 102 n s-1 and 3.57 × 105 n s-1. We also show that the microplastic concentration in the water column was not well explained by river discharge. This suggests that although high discharge events as observed here can over short time periods lead to peak microplastic concentrations (e.g., 1.23 × 102 n m-3), microplastic load variance was not dominated by discharge in the study area.


Subject(s)
Microplastics , Water Pollutants, Chemical , Rivers , Plastics , Water , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
4.
Oecologia ; 204(3): 641-651, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38472472

ABSTRACT

In ecosystems, the rates of resource consumption by animals drive the flows of matter and energy. Consumption rates are known to vary according to consumer energy requirements, resource nutrient content and mechanical properties. The aim of our study is to determine how mechanical constraints, compared to energetic and nutritional constraints, explain the variation in leaf litter consumption rates by macrodetritivores. In particular, we focus on the impact of litter toughness. To this end, we propose a non-linear model describing leaf litter consumption rates of detritivore as a function of litter toughness. We also investigate a possible match between bite force and litter toughness, since consumer-resource co-occurrence is thought to be driven by the match between invertebrate mandibular traits and resource toughness. Our study was designed as follows: leaf litter from oak and hornbeam was exposed to field physical and microbial decomposition in aquatic and terrestrial ecosystems for selected time periods before it was offered to eight macrodetritivore taxa (three forest stream taxa and five forest soil taxa) in no-choice laboratory feeding experiments. Our findings show that, compared to energetic and nutritional constraints, mechanical traits have a greater impact on litter consumption rate by detritivores. After subtracting the contribution of the detritivore body mass, we report that litter consumption rates depend primarily on litter toughness. A sigmoid function is best suited to characterize the relationship between mass-independent consumption rate and litter toughness. We note that the parameters of our sigmoid model are taxon-specific, suggesting biomechanical thresholds and biological differences among taxa. Interestingly, we found no correlation with detritivore bite force, suggesting that food processing by detritivores does not only depend on mandibles strength.


Subject(s)
Ecosystem , Invertebrates , Animals , Forests , Rivers , Plant Leaves
6.
Environ Res ; 245: 118024, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38151151

ABSTRACT

River systems are important recipients of environmental plastic pollution and have become key pathways for the transfer of mismanaged waste from the land to the ocean. Understanding the sources and fate of plastic debris, including plastic litter (>5 mm) and microplastics (MPs) (<5 mm), entering different riverine systems is essential to mitigate the ongoing environmental plastic pollution crisis. We comprehensively investigated the plastic pollution in the catchments of two rivers in the Yangtze River basin: an urban river, the Suzhou section of the Beijing-Hangzhou Grand Canal (SZ); and a pristine rural river, the Jingmen section of the Hanjiang River (JM). The abundance of plastic pollutants in SZ was significantly higher than in JM: 0.430 ± 0.450 items/m3 and 0.003 ± 0.003 items/m3 of plastic litter in the water; 23.47 ± 25.53 n/m3 and 2.78 ± 1.55 n/m3 MPs in the water; and 218.82 ± 77.40 items/kg and 5.30 ± 1.99 items/kg of MPs in the sediment, respectively. Plastic litter and MPs were closely correlated in abundance and polymer composition. Overall, the polymer type, shape and color of MPs were dominant by polypropylene (42.5%), fragment (60.4%) and transparent (40.0%), respectively. Source tracing analysis revealed that packaging, shipping, and wastewater were the primary sources of plastic pollutants. The mantel analysis indicated that socio-economic and geospatial factors play crucial roles in driving the hotspot formation of plastic pollution in river networks. The composition of the MP communities differed significantly between the sediments and the overlying water. The urban riverbed sediments had a more pronounced pollutant 'sink' effect compared with the pristine rivers. These findings suggested that the modification of natural streams during urbanization may influence the transport and fate of plastic pollutants in them. Our results offer pivotal insights into effective preventive measures.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Plastics , Rivers , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Microplastics , Water
7.
Environ Res ; 243: 117882, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38070853

ABSTRACT

Urban rivers represent the major conduits for land-sourced microplastics in the global oceans, yet the real-time dynamics of their emissions in rivers during rainfall (and runoff) events are poorly understood. Herein, we report the results of high-frequency sampling of microplastic particles (MPs) and fibers (MPFs) in the surface water of an urban river in Japan over the course of three rainfall events (i.e., light, moderate, and heavy rainfalls). The event mean concentrations (EMCs) of MPs amounted to 35,000 items/m3, 929,000 items/m3, and 331,000 items/m3; and the corresponding total loads were 0.5 kg, 19.8 kg, and 35.0 kg for light, moderate and heavy rainfalls, respectively. The inter-event total loads of MPs correlate well with the total rainfall, while the concentrations were linked with the number of antecedent dry days. The dynamic trends show that <2000 µm MPs displayed first flush effects during light to moderate rainfall events (>50% mass discharged with the initial 20-40% of flow). Small-sized MPs (10-40 µm) mobilized rapidly at lower rainfall intensities, whereas MPs over 2000 µm discharged immediately after the peak rainfall intensity. Moreover, <70 µm MPs depicted a surge following heavy rainfall events due to turbulent flow conditions reverting the deposited MPs into suspension. Overall, the three events increased the loads by 4-110 folds, and EMCs by 10-350 folds compared to the concentrations during dry weather while portraying a significant impact on 300-1000 µm MPs. The dynamics of MPs were correlated with those of suspended solids in river water, and the characteristics were comparable to the same of road dust sampled in Japan. Although the dynamic trends between MPs and MPFs in river water were comparable, MPFs were relatively less impacted by rain, likely due to the intervention of separate sewer systems in the study area.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Rivers , Water Movements , Water Pollutants, Chemical/analysis , Rain , Water , Environmental Monitoring/methods
8.
Ecotoxicol Environ Saf ; 270: 115875, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38142593

ABSTRACT

The objective of this study was to investigate the potential of native and invasive plant species for the uptake and accumulation of lithium (Li) and strontium (Sr) along the Sava River, focusing on their bioindication and phytoremediation capabilities. Sampling was carried out in riparian zones exposed to different pollution sources in Slovenia, Croatia, and Serbia. Plant samples of native (Salix alba, Populus alba, Populus nigra, Ulmus glabra, Juglans regia) and invasive (Amorpha fruticosa, Reynoutria japonica, Solidago canadensis, Impatiens glandulifera) species were collected. The content of Li and Sr was analyzed in the soils, roots, and leaves of the selected plants, as well as physical and chemical soil properties. Both Li and Sr content in the soils increased from the source to the mouth of the Sava River. The native species showed significant potential for Li and Sr accumulation based on the metal accumulation index. The highest Sr accumulation was measured in the leaves of Salix alba and the roots of Juglans regia, while the highest Li accumulation was measured in Ulmus glabra. Native species, especially Salix alba, proved to be better bioindicators of Li and Sr. Invasive species, especially Amorpha fruticosa and Impatiens glandulifera, showed a remarkable ability to translocate Sr and Li, respectively, to leaves. These results provide valuable insight into the suitability of plants for biomonitoring soil contamination and potential applications in phytoremediation strategies. In summary, the study shows the importance of native species in the context of the accumulation and bioindication of soil pollution.


Subject(s)
Populus , Salix , Soil Pollutants , Strontium , Biodegradation, Environmental , Lithium , Rivers , Plants , Soil/chemistry , Populus/chemistry , Soil Pollutants/analysis
9.
Ecotoxicol Environ Saf ; 280: 116537, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38852469

ABSTRACT

Microplastics (MPs), emerging as significant pollutants, have been consistently detected in aquatic environments, with the Yangtze River experiencing a particularly severe level of microplastic pollution, exceeding all other watersheds in China. Polypropylene (PP), the plastic most abundantly found in the middle and lower reaches of the Yangtze River Basin, has less comprehensive research results into its toxic effects. Consequently, the present investigation employed zebrafish as a model organism to delve into the toxicological impacts of polypropylene microplastics (PP-MPs) with a diameter of 5 µm across varying concentrations (300 mg/L and 600 mg/L). Using histopathological, microbiota profiling, and transcriptomic approaches, we systematically evaluated the impact of PP-MPs exposure on the intestine and liver of zebrafish. Histopathological analysis revealed that exposure to PP-MPs resulted in thinner intestinal walls, damaged intestinal mucosa, and hepatic cellular damage. Intestinal microbiota profiling demonstrated that, the richness, uniformity, diversity, and homogeneity of gut microbes significantly increased after the PP-MPs exposure at high concentration. These alterations were accompanied by shifts in the relative abundance of microbiota associated with intestinal pathologies, suggesting a profound impact on the intestinal microbial community structure. Concurrently, hepatic transcriptome analysis and RT-qPCR indicated that the downregulation of pathways and genes associated with cell proliferation regulation and DNA damage repair mechanisms contributed to hepatic cellular damage, ultimately exerting adverse effects on the liver. Correlation analysis between the intestinal microbiota and liver transcriptome profiles further highlighted significant associations between intestinal microbiota and the downregulated hepatic pathways. Collectively, these results provide novel insights into the subacute toxicological mechanisms of PP-MPs in aquatic organisms and highlight the need for further research on the ecological and health risks associated with PP-MPs pollution.


Subject(s)
Gastrointestinal Microbiome , Liver , Microplastics , Polypropylenes , Water Pollutants, Chemical , Zebrafish , Animals , Microplastics/toxicity , Polypropylenes/toxicity , Water Pollutants, Chemical/toxicity , Liver/drug effects , Liver/pathology , Gastrointestinal Microbiome/drug effects , China , Intestines/drug effects , Intestines/pathology , Transcriptome/drug effects , Rivers/chemistry , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology
10.
J Fish Biol ; 104(3): 548-563, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37889122

ABSTRACT

A new species of the genus Awaous (Oxudercidae), Awaous motla sp. nov., is described based on 18 specimens collected from the Mahanadi River near Sonepur, Subarnapur District, and 3 specimens from the same river near Boudh bridge, Boudh District of Odisha, India. This species is distinct from its congeners by having a combination of characteristics: relatively small eyes, diameter of 6.6-8.4 in head length (LH); robust and long snout, 2.0-2.6 in LH; eye diameter 2.7-4.1 in snout length; cephalic sensory pore system interrupted with eight pores; predorsal scales 13-15; longitudinal scale series 55-58; gill rakers 2 + 1 + (6-7) on the first gill arch; teeth small, conical, and in a single row on the upper jaw and multiserial (2-3) on the lower jaw. This species is also differentiated from some of its congeners in the nucleotide composition of the cytochrome c oxidase I gene by 8.3%-13.8% Kimura two-parameter (K2P) distance and belongs to a separate cluster in the maximum likelihood tree analysis. This finding is also supported by the species delimitation analysis based on Assemble Species by Automatic Partitioning. The new species holds high commercial value in its locality and needs special conservation attention for sustainable utilization.


Subject(s)
Perciformes , Rivers , Animals , Fishes , Gills , India
11.
J Fish Biol ; 104(1): 227-239, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37814934

ABSTRACT

Turcinoemacheilus ekmekciae, new species, from upper Euphrates and Tigris drainages is distinguished from other species of Turcinoemacheilus in Western Asia by having a dark stripe broader than the eye diameter along the lateral line, rarely possessing roundish blotches, 5-6 mandibular pores in mandibular canal, a comperatvely smaller head, a deeper body, and a greater pre-pelvic distance. Our specimens collected from the upper Great Zab, near the type locality of Turcinoemacheilus kosswigi, showed notable genetic divergence (a minimum K2P of 3.3%) from sequences reported as T. kosswigi in previous studies. Despite morphological similarities, this molecular difference suggests that the populations analysed in previous studies may represent a potential new species of Turcinoemacheilus, which we tentatively named as Turcinoemacheius cf. kosswigi. Molecular data also suggest that T. ekmekciae is characterized by a minimum K2P distance of 3.5% from Turcinoemacheilus minimus and T. cf. kosswigi. The three methods for species delimitation (assemble species by automatic partitioning [ASAP], Poisson tree processes [PTP], and multi-rate PTP [mPTP]) that were utilized for testing species assignments consistently identified our test group as a distinct species.


Subject(s)
Cypriniformes , Rivers , Animals , Genetic Drift
12.
J Fish Biol ; 104(4): 1136-1151, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38230582

ABSTRACT

We investigated the digestive biology of two prevalent leiognathid species in Pranburi River estuary, Thailand: the decorated ponyfish (Nuchequula gerreoides) and the splendid polyfish (Eubleekeria splendens). A total of 632 samples collected from February to April and September to November 2017 were analysed using morphological and histological approaches. The overall structures were similar between the species: a short mucous-cell-rich oesophagus region, a well-developed gastric gland uniformly present across the stomach's mucosal layer, and three finger-like pyloric caeca between the stomach and intestine. However, there were marked differences in the mouth, gill raker, and intestinal coefficient (IC). N. gerreoides had a relatively longer mouth, smoother gill rakers, and an IC of 1.08 ± 0.01, similar to those of other carnivorous fish. In contrast, the gill raker of E. splendens had more villiform teeth that can filter-feed better, and their IC was 2.16 ± 0.02 (i.e., longer intestine). Although digestive structures were generally similar between the ponyfishes, these differences suggest that N. gerreoides is relatively carnivorous with stronger suction, whereas E. splendens may be an omnivorous or herbivorous filter-feeder.


Subject(s)
Estuaries , Rivers , Animals , Thailand , Fishes/anatomy & histology , Mouth
13.
J Fish Biol ; 104(5): 1503-1512, 2024 May.
Article in English | MEDLINE | ID: mdl-38404188

ABSTRACT

River estuaries are influenced by terrestrial and marine areas, and have a unique environment that is constantly fluctuating. They are also important habitats for biodiversity conservation. Tanegashima Island is significantly influenced by the Kuroshio Current. Although nearby Yakushima Island has been recognized as a World Natural Heritage site and information on many species has been collected, there is little information on species inhabiting the river estuaries of Tanegashima Island. In this study, the river estuarine ichthyofauna of 26 small and medium-sized rivers on Tanegashima Island was surveyed and a total of 2758 individuals of 29 species and one genus belonging to 15 families were collected. The fish fauna of the river estuaries of Tanegashima Island were classified into three groups, namely the river estuaries where coastal terraces are underdeveloped and drowned valleys are formed, the river group where the riverbed gradient at the mouth is high, and other river groups. Environmental factors selected as being important for ordination of fish fauna were the altitude of the headstreams at the watershed scale, the gradient of the river estuarine area, and the presence or absence of rapids in the estuary. The importance of the geohistorical factor of drowned valley formation, in addition to habitat and watershed scale environmental factors, as a factor on river estuarine fish fauna is an important finding for future conservation of local biota diversity.


Subject(s)
Biodiversity , Estuaries , Fishes , Rivers , Animals , Japan , Islands , Water Movements , Ecosystem
14.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674004

ABSTRACT

Phenolic compounds, originating from industrial, agricultural, and urban sources, can leach into flowing waters, adversely affecting aquatic life, biodiversity, and compromising the quality of drinking water, posing potential health hazards to humans. Thus, monitoring and mitigating the presence of phenolic compounds in flowing waters are essential for preserving ecosystem integrity and safeguarding public health. This study explores the development and performance of an innovative sensor based on screen-printed electrode (SPE) modified with graphene (GPH), poly(3,4-ethylenedioxythiophene) (PEDOT), and tyrosinase (Ty), designed for water analysis, focusing on the manufacturing process and the obtained electroanalytical results. The proposed biosensor (SPE/GPH/PEDOT/Ty) was designed to achieve a high level of precision and sensitivity, as well as to allow efficient analytical recoveries. Special attention was given to the manufacturing process and optimization of the modifying elements' composition. This study highlights the potential of the biosensor as an efficient and reliable solution for water analysis. Modification with graphene, the synthesis and electropolymerization deposition of the PEDOT polymer, and tyrosinase immobilization contributed to obtaining a high-performance and robust biosensor, presenting promising perspectives in monitoring the quality of the aquatic environment. Regarding the electroanalytical experimental results, the detection limits (LODs) obtained with this biosensor are extremely low for all phenolic compounds (8.63 × 10-10 M for catechol, 7.72 × 10-10 M for 3-methoxycatechol, and 9.56 × 10-10 M for 4-methylcatechol), emphasizing its ability to accurately measure even subtle variations in the trace compound parameters. The enhanced sensitivity of the biosensor facilitates detection and quantification in river water samples. Analytical recovery is also an essential aspect, and the biosensor presents consistent and reproducible results. This feature significantly improves the reliability and usefulness of the biosensor in practical applications, making it suitable for monitoring industrial or river water.


Subject(s)
Biosensing Techniques , Bridged Bicyclo Compounds, Heterocyclic , Graphite , Monophenol Monooxygenase , Phenols , Polymers , Rivers , Water Pollutants, Chemical , Biosensing Techniques/methods , Graphite/chemistry , Rivers/chemistry , Polymers/chemistry , Phenols/analysis , Water Pollutants, Chemical/analysis , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Enzymes, Immobilized/chemistry , Electrochemical Techniques/methods , Electrodes , Limit of Detection
15.
J Fish Biol ; 104(5): 1468-1482, 2024 May.
Article in English | MEDLINE | ID: mdl-38369621

ABSTRACT

Environmental DNA (eDNA) is a promising tool for the continuous monitoring of fish ecology and diversity. However, its potential for describing the phenological activity of fish has rarely been examined. This study aimed to elucidate a linkage between the spatiotemporal distribution of eDNA and the phenology of an amphidromous fish, ayu Plecoglossus altivelis altivelis, in a river in Hokkaido, Japan, which is its northernmost distributional area. A significant positive correlation between eDNA concentration and catch per unit effort of P. a. altivelis in the river confirmed the use of eDNA as a surrogate for the abundance of P. a. altivelis. eDNA of P. a. altivelis was first detected in late April on a sandy beach adjacent to the river mouth. Subsequent to its first detection at the lowest site in the river in early May, eDNA spread throughout the river, indicating the upstream migration of P. a. altivelis. Spawning activity was also represented by a rapid increase in eDNA concentration and its surge at night in the lowest reaches of the river during September and October. These results suggest that upstream migration and spawning primarily commenced when the water temperature reached 10°C and decreased below 20°C, respectively. This observation is consistent with the behavioral responses observed in P. a. altivelis populations from other regions of Japan. Consequently, this study demonstrated that eDNA distribution was closely linked to the phenological activity of P. a. altivelis and that eDNA is a powerful tool for studying the phenology of migratory fishes.


Subject(s)
DNA, Environmental , Osmeriformes , Rivers , Animals , Japan , DNA, Environmental/analysis , Osmeriformes/genetics , Osmeriformes/physiology , Seasons , Female , Male
16.
J Environ Manage ; 351: 119692, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38039589

ABSTRACT

Chemical contaminants, such as pesticides, pharmaceuticals and industrial compounds are ubiquitous in surface water and sediment in areas subject to human activity. While targeted chemical analysis is typically used for water and sediment quality monitoring, there is growing interest in applying effect-based methods with in vitro bioassays to capture the effects of all active contaminants in a sample. The current study evaluated the biological effects in surface water and sediment from two contrasting catchments in Aotearoa New Zealand, the highly urbanised Whau River catchment in Tamaki Makaurau (Auckland) and the urban and mixed agricultural Koreti (New River) Estuary catchment. Two complementary passive sampling devices, Chemcatcher for polar chemicals and polyethylene (PED) for non-polar chemicals, were applied to capture a wide range of contaminants in water, while composite sediment samples were collected at each sampling site. Bioassays indicative of induction of xenobiotic metabolism, receptor-mediated effects, genotoxicity, cytotoxicity and apical effects were applied to the water and sediment extracts. Most sediment extracts induced moderate to strong estrogenic and aryl hydrocarbon (AhR) activity, along with moderate toxicity to bacteria. The water extracts showed similar patterns to the sediment extracts, but with lower activity. Generally, the polar Chemcatcher extracts showed greater estrogenic activity, photosynthesis inhibition and algal growth inhibition than the non-polar PED extracts, though the PED extracts showed greater AhR activity. The observed effects in the water extracts were compared to available ecological effect-based trigger values (EBT) to evaluate the potential risk. For the polar extracts, most sites in both catchments exceeded the EBT for estrogenicity, with many sites exceeding the EBTs for AhR activity and photosynthesis inhibition. Of the wide range of endpoints considered, estrogenic activity, AhR activity and herbicidal activity appear to be the primary risk drivers in both the Whau and Koreti Estuary catchments.


Subject(s)
Rivers , Water Pollutants, Chemical , Humans , Rivers/chemistry , Water/analysis , Water Pollutants, Chemical/analysis , Agriculture , Biological Assay , Polyethylene , Environmental Monitoring/methods , Geologic Sediments/chemistry
17.
J Environ Manage ; 359: 121050, 2024 May.
Article in English | MEDLINE | ID: mdl-38718605

ABSTRACT

This study investigates microplastics in urban environments, focusing on their abundance, types, and relationships with hydrological parameters. Microplastic analyses encompassed two steps: (1) examining urban streams including discharges from a wastewater treatment plant (WWTP) during non-rainy seasons, and (2) analyzing stormwater runoff from urban surfaces for microplastic content during rainy seasons. In urban streams, WWTP discharge exhibited higher microplastic concentrations compared to other streams, indicating WWTP discharge is a dominant source of microplastic pollution. The most prevalent microplastics detected were polypropylene, polyethylene, and their copolymer, although a variety of other types were also found. Concentrations of microplastics were notably influenced by specific urban land uses, as evidenced by a strong correlation (0.95) between microplastic concentrations and areas characterized by industrial and transportation activities. During rainy seasons, microplastics followed the pattern of stormwater runoff, but the highest concentrations, significantly exceeding those in urban streams, were observed before the peak runoff. These maximum concentrations and their timing of occurrence were linked to antecedent dry days, rain intensity, and runoff rate, showing significant statistical correlations. Regardless of their sizes, a diverse range of microplastic types was identified in these conditions, with no consistent pattern across different rain events. This highlights the complex nature of urban microplastic pollution. This study reveals that aquatic ecosystems are significantly affected by two primary factors: (1) the consistent contribution of microplastics from WWTP discharges, and (2) the short-term, but severe, impacts of microplastic pollution associated with stormwater runoff. Furthermore, it suggests the development of alternative strategies to mitigate microplastic pollution in aquatic ecosystems, informed by the findings on the characteristics of microplastics in urban environments. This research underscores the urgent need for integrated urban environmental management strategies, paving the way for future studies to further explore and address the multifaceted challenges posed by microplastic pollution in aquatic ecosystems.


Subject(s)
Environmental Monitoring , Microplastics , Rivers , Water Pollutants, Chemical , Microplastics/analysis , Water Pollutants, Chemical/analysis , Rivers/chemistry , Rain , Seasons
18.
J Environ Manage ; 355: 120402, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38428183

ABSTRACT

Interactions of microplastics (MPs) biofilm with antibiotic resistance genes (ARGs) and antibiotics in aquatic environments have made microplastic biofilm an issue of keen scholarly interest. The process of biofilm formation and the degree of ARGs enrichment in the presence of antibiotic-selective pressure and the impact on the microbial community need to be further investigated. In this paper, the selective pressure of ciprofloxacin (CIP) and illumination conditions were investigated to affect the physicochemical properties, biomass, and extracellular polymer secretion of polyvinyl chloride (PVC) microplastic biofilm. In addition, relative copy numbers of nine ARGs were analyzed by real-time quantitative polymerase chain reaction (qPCR). In the presence of CIP, microorganisms in the water and microplastic biofilm were more inclined to carry associated ARGs (2-3 times higher), which had a contributing effect on ARGs enrichment. The process of pre-microplastic biofilm formation might have an inhibitory effect on ARGs (total relative abundance up to 0.151) transfer and proliferation compared to the surrounding water (total relative abundance up to 0.488). However, in the presence of CIP stress, microplastic biofilm maintained the abundance of ARGs (from 0.151 to 0.149) better compared to the surrounding water (from 0.488 to 0.386). Therefore, microplastic biofilm act as abundance buffer island of ARGs stabilizing the concentration of ARGs. In addition, high-throughput analyses showed the presence of antibiotic-resistant (Pseudomonas) and pathogenic (Vibrio) microorganisms in biofilm under different conditions. The above research deepens our understanding of ARGs enrichment in biofilm and provides important insights into the ecological risks of interactions between ARGs, antibiotics, and microplastic biofilm.


Subject(s)
Microplastics , Plastics , Genes, Bacterial , Rivers , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Ciprofloxacin , Water , Biofilms
19.
J Environ Manage ; 353: 120190, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38306859

ABSTRACT

Chromium, extensively used in various industries, poses significant challenges due to its environmental impact. The threat of Cr(VI) causes critical concerns in aquatic ecosystems as a consequence of the fluidity of water. The conventional approach for the treatment of effluents containing Cr(VI) is reducing Cr(VI) to low-noxious Cr(III). This research is related to a Gram positive bacterium newly isolated from tannery effluent under aerobic conditions. To characterize functional groups on the isolate, Fourier transform infrared spectroscopy was utilized. The effect of different factors on Cr(VI) bioreduction was investigated, including temperature, initial Cr(VI) concentration, acetate concentration, and Tween 80 surfactant. Under optimal conditions (37 °C and 0.90 g/L sodium acetate), the bioreduction rate of the isolate, identified as Lactococcus lactis AM99, achieved 88.0 % at 300 mg/L Cr(VI) during 72 h (p < 0.05). It was observed that Cr(VI) bioreduction was enhanced by the acetate in both the quantity and intensity, while Tween 80 had no impact on the reaction. The strain AM99 exhibited remarkable characteristics, notably a marginal decrease in growth at elevated concentrations of hexavalent chromium and an exceptional potential to reduce Cr(VI) even at very low biomass levels, surpassing any prior findings in the associated research. Furthermore, The isolate could tolerate 1400 mg/L Cr(VI) in a solid medium. These distinctive features make the isolate a promising and well-suited candidate for remediating Cr(VI)-polluted environments. Additionally, the impact of biogenic extracellular polymer produced by the strain AM99 on reduction was examined at different temperatures.


Subject(s)
Lactococcus lactis , Ecosystem , Polysorbates , Rivers , Biodegradation, Environmental , Oxidation-Reduction , Chromium , Bacteria , Acetates
20.
J Environ Manage ; 360: 121117, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733848

ABSTRACT

The ecological health of freshwater rivers is deteriorating globally due to careless human activities, for instance, the emission of plastic garbage into the river. The current research was the first assessment of microplastics (MPs) pollution in water, sediment, and representative organisms (fish, crustacean, and bivalve) from the Surma River. Water, sediment, and organisms were sampled from six river sites (Site 1: Charkhai; Site 2: Golapganj; Site 3: Alampur; Site 4: Kazir Bazar; Site 5: Kanishail and Site 6: Lamakazi), and major water quality parameters were recorded during sampling. Thereafter, MPs in water, sediment, and organism samples were extracted, and then microscopically examined to categorize selected MPs types. The abundance of MPs, as well as size, and color distribution, were estimated. Polymer types were analyzed by ATR-FTIR, the color loss of MPs was recorded, the Pollution Load Index (PLI) was calculated, and the relationship between MPs and water quality parameters was analyzed. Sites 4 and 5 had comparatively poorer water quality than other sites. Microplastic fibers, fragments, and microbeads were consistently observed in water, sediment, and organisms. A substantial range of MPs in water, sediment, and organisms (37.33-686.67 items/L, 0.89-15.12 items/g, and 0.66-48.93 items/g, respectively) was recorded. There was a diverse color range, and MPs of <200 µm were prevalent in sampling areas. Six polymer types were identified by ATR-FTIR, namely Polyethylene (PE), Polyamide (PA), Polypropylene (PP), Cellulose acetate (CA), Polyethylene terephthalate (PET), and Polystyrene (PS), where PE (41%) was recognized as highly abundant. The highest PLI was documented in Site 4 followed by Site 5 both in water and sediment. Likewise, Sites 4 and 5 were substantially different from other study areas according to PCA. Overall, the pervasiveness of MPs was evident in the Surma River, which requires further attention and prompt actions.


Subject(s)
Environmental Monitoring , Microplastics , Rivers , Water Pollutants, Chemical , Water Quality , Microplastics/analysis , Rivers/chemistry , Bangladesh , Water Pollutants, Chemical/analysis , Plastics/analysis , Animals , Geologic Sediments/analysis , Geologic Sediments/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL