Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.298
Filter
Add more filters

Publication year range
1.
Environ Microbiol ; 26(2): e16549, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38196372

ABSTRACT

Microplastics affect soil functions depending on drought conditions. However, how their combined effect influences soil fungi and their linkages with ecosystem functions is still unknown. To address this, we used rhizosphere soil from a previous experiment in which we employed microplastic fibres addition and drought in a factorial design, and evaluated their effects on soil fungal communities. Microplastics decreased soil fungal richness under well-watered conditions, likely linked to microplastics leaching toxic substances into the soil, and microplastic effects on root fineness. Under drought, by contrast, microplastics increased pathogen and total fungal richness, likely related to microplastic positive effects on soil properties, such as water holding capacity, porosity or aggregation. Soil fungal richness was the attribute most affected by microplastics and drought. Microplastics altered the relationships between soil fungi and ecosystem functions to the point that many of them flipped from positive to negative or disappeared. The combined effect of microplastics and drought on fungal richness mitigated their individual negative effect (antagonism), suggesting that changes in soil water conditions may alter the action mode of microplastics in soil. Microplastic leaching of harmful substances can be mitigated under drought, while the improvement of soil properties by microplastics may alleviate such drought conditions.


Subject(s)
Ecosystem , Mycobiome , Microplastics , Plastics , Soil , Droughts , Soil Microbiology , Water/analysis
2.
Environ Microbiol ; 26(6): e16658, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843592

ABSTRACT

Plastic pollution is a vast and increasing problem that has permeated the environment, affecting all aspects of the global food web. Plastics and microplastics have spread to soil, water bodies, and even the atmosphere due to decades of use in a wide range of applications. Plastics include a variety of materials with different properties and chemical characteristics, with polyethylene being a dominant fraction. Polyethylene is also an extremely persistent compound with slow rates of photodegradation or biodegradation. In this study, we developed a method to isolate communities of microbes capable of biodegrading a polyethylene surrogate. This method allows us to study potential polyethylene degradation over much shorter time periods. Using this method, we enriched several communities of microbes that can degrade the polyethylene surrogate within weeks. We also identified specific bacterial strains with a higher propensity to degrade compounds similar to polyethylene. We provide a description of the method, the variability and efficacy of four different communities, and key strains from these communities. This method should serve as a straightforward and adaptable tool for studying polyethylene biodegradation.


Subject(s)
Bacteria , Biodegradation, Environmental , Polyethylene , Polyethylene/metabolism , Polyethylene/chemistry , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Microbiota , Soil Microbiology
3.
Glob Chang Biol ; 30(7): e17415, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39005227

ABSTRACT

Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta-analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks.


Subject(s)
Microplastics , Soil Microbiology , Microplastics/analysis , Soil/chemistry , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Soil Pollutants/analysis , Microbiota/drug effects , Biomass , Carbon/analysis , Carbon/metabolism
4.
PLoS Biol ; 19(3): e3001130, 2021 03.
Article in English | MEDLINE | ID: mdl-33784293

ABSTRACT

Microplastics (MPs), plastic particles <5 mm, are found in environments, including terrestrial ecosystems, planetwide. Most research so far has focused on ecotoxicology, examining effects on performance of soil biota in controlled settings. As research pivots to a more ecosystem and global change perspective, questions about soil-borne biogeochemical cycles become important. MPs can affect the carbon cycle in numerous ways, for example, by being carbon themselves and by influencing soil microbial processes, plant growth, or litter decomposition. Great uncertainty surrounds nano-sized plastic particles, an expected by-product of further fragmentation of MPs. A major concerted effort is required to understand the pervasive effects of MPs on the functioning of soils and terrestrial ecosystems; importantly, such research needs to capture the immense diversity of these particles in terms of chemistry, aging, size, and shape.


Subject(s)
Carbon Cycle/drug effects , Microplastics/analysis , Microplastics/toxicity , Soil/chemistry , Carbon/metabolism , Ecosystem , Soil Microbiology
5.
Microb Ecol ; 87(1): 101, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083238

ABSTRACT

Mulching is a common method increasing crop yield and achieving out-of-season production; nevertheless, their removal poses a significant environmental danger. In this scenario, the use of biodegradable plastic mulches comes up as a solution to increase the sustainability of this practice, as they can be tilled in soil without risk for the environment. In this context, it is important to study the microbial response to this practice, considering their direct involvement in plastic biodegradation. This study evaluated the biodegradation of three commercial mulch residues: one conventional non-biodegradable mulch versus two biodegradable ones (white and black compostable Mater-Bi mulches). The experiment was conducted under three incubation temperatures (room temperature 20-25 °C, 30 °C, and 45 °C) for a 6-month trial using fallow agricultural soil. Soil without plastic mulch residues was used as a control. White mater-bi biodegradable mulch residues showed higher degradation rates up to 88.90% at 30 °C, and up to 69.15% at room temperature. Furthermore, incubation at 45 °C determines the absence of degradation for all types of mulch considered. Moreover, bacterial alpha diversity was primarily influenced by plastic type and temperature, while fungal populations were mainly affected by temperature. Beta diversity was impacted by all experimental variables. Predicted functional genes crucial for degrading complex substrates, including those encoding hydrolases, cutinases, cellobiosidases, and lipases, were derived from 16S rRNA gene sequencing data. Cluster analysis based on predicted enzyme-encoding gene abundance revealed two clusters, mainly linked to sampling time. Finally, core microbiome analysis identified dominant bacterial and fungal taxa in various soil-plastic ecosystems during degradation, pinpointing species potentially involved in plastic breakdown. The present study allows an assessment of how different temperatures affect the degradation of mulch residues in soil, providing important insights for different climatic growing zones. It also fills a gap in the literature by directly comparing the effects of biodegradable and polyethylene mulches on soil microbial communities.


Subject(s)
Bacteria , Biodegradation, Environmental , Fungi , Microbiota , Polyethylene , Soil Microbiology , Soil , Temperature , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Fungi/genetics , Fungi/metabolism , Fungi/classification , Soil/chemistry , Biodegradable Plastics/metabolism , RNA, Ribosomal, 16S/genetics
6.
Environ Res ; 251(Pt 1): 118631, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38452914

ABSTRACT

Plastic waste has become a global issue and a threat to the ecosystem. The present study isolated polyurethane (PU) degrading bacterial species from soil dumped with plastic wastes. Four bacterial isolates, RS1, RS6, RS9 and RS13 were obtained and their ability to degrade PU in a synthetic medium with PU as a sole source of carbon was assessed individually. After thirty days of incubation, the highest PU weight loss of 67.36 ± 0.32% was recorded in the medium containing RS13 isolate. The results of FTIR revealed the occurrence of carbonyl peaks. The putative isolate RS13 confirmed with the genus Moraxella according to 16S rRNA gene sequencing and the isolate was specified as Moraxella catarrhalis strain BMPPS3. The restriction analysis of Moraxella catarrhalis strain BMPPS3 revealed that the GCAT content to 51% and 49% correspondingly. Moraxella catarrhalis strain BMPPS3 was able to colonize on PU surface and form a biofilm as revealed by SEM investigation. Fatty acids and alkanes were found to be the degradation products by GC-MS analysis. The presence of these metabolites facilitated the growth of strain RS13 and suggested that ester hydrolysis products had been mineralized into CO2 and H2O. Extracellular biosurfactant synthesis has also been found in Moraxella catarrhalis strain BMPPS13 inoculated with synthetic media and mineral salt media containing PU and glucose as carbon sources, respectively with a significant level of cell-surface hydrophobicity (32%). The production and activity of extracellular esterase showed consistent increase from day 1-15 which peaked (1.029 mM/min/mg) on day 24 significantly at P < 0.001. Crude biosurfactants were lipopeptide-based, according to the characteristic investigation. According to this study findings, Moraxella catarrhalis produces biosurfactants of the esterase, urethanase and lipase (lipopeptide) types when carbon source PU is present.


Subject(s)
Biodegradation, Environmental , Moraxella catarrhalis , Polyurethanes , Moraxella catarrhalis/genetics , Moraxella catarrhalis/metabolism , Moraxella catarrhalis/enzymology , Soil Microbiology , RNA, Ribosomal, 16S/genetics , Biofilms/growth & development
7.
Environ Res ; 252(Pt 3): 119012, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38704010

ABSTRACT

Microplastics and heavy metals are ubiquitous and persistent contaminants that are widely distributed worldwide, yet little is known about the effects of their interaction on soil ecosystems. A soil incubation experiment was conducted to investigate the individual and combined effects of polyethylene microplastics (PE-MPs) and lead (Pb) on soil enzymatic activities, microbial biomass, respiration rate, and community diversity. The results indicate that the presence of PE-MPs notably reduced soil pH and elevated soil Pb bioavailability, potentially exacerbated the combined toxicity on the biogeochemical cycles of soil nutrients, microbial biomass carbon and nitrogen, and the activities of soil urease, sucrase, and alkaline phosphatase. Soil CO2 emissions increased by 7.9% with PE-MPs alone, decreased by 46.3% with single Pb, and reduced by 69.4% with PE-MPs and Pb co-exposure, compared to uncontaminated soils. Specifically, the presence of PE-MPs and Pb, individually and in combination, facilitated the soil metabolic quotient, leading to reduced microbial metabolic efficiency. Moreover, the addition of Pb and PE-MPs modified the composition of the microbial community, leading to the enrichment of specific taxa. Tax4Fun analysis showed the effects of Pb, PE-MPs and their combination on the biogeochemical processes and ecological functions of microbes were mainly by altering amino acid metabolism, carbohydrate metabolism, membrane transport, and signal transduction. These findings offer valuable insights into the ecotoxicological effects of combined PE-MPs and Pb on soil microbial dynamics, reveals key assembly mechanisms and environmental drivers, and highlights the potential threat of MPs and heavy metals to the multifunctionality of soil ecosystems.


Subject(s)
Biomass , Lead , Microplastics , Polyethylene , Soil Microbiology , Soil Pollutants , Lead/toxicity , Soil Pollutants/toxicity , Microplastics/toxicity , Polyethylene/toxicity , Soil/chemistry , Ecotoxicology
8.
Environ Res ; 251(Pt 2): 118670, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38493849

ABSTRACT

The surfactant-enhanced bioremediation (SEBR) of organic-contaminated soil is a promising soil remediation technology, in which surfactants not only mobilize pollutants, but also alter the mobility of bacteria. However, the bacterial response and underlying mechanisms remain unclear. In this study, the effects and mechanisms of action of a selected nonionic surfactant (Tween 80) on Pseudomonas aeruginosa transport in soil and quartz sand were investigated. The results showed that bacterial migration in both quartz sand and soil was significantly enhanced with increasing Tween 80 concentration, and the greatest migration occurred at a critical micelle concentration (CMC) of 4 for quartz sand and 30 for soil, with increases of 185.2% and 27.3%, respectively. The experimental results and theoretical analysis indicated that Tween 80-facilitated bacterial migration could be mainly attributed to competition for soil/sand surface sorption sites between Tween 80 and bacteria. The prior sorption of Tween 80 onto sand/soil could diminish the available sorption sites for P. aeruginosa, resulting in significant decreases in deposition parameters (70.8% and 33.3% decrease in KD in sand and soil systems, respectively), thereby increasing bacterial transport. In the bacterial post-sorption scenario, the subsequent injection of Tween 80 washed out 69.8% of the bacteria retained in the quartz sand owing to the competition of Tween 80 with pre-sorbed bacteria, as compared with almost no bacteria being eluted by NaCl solution. Several machine learning models have been employed to predict Tween 80-faciliated bacterial transport. The results showed that back-propagation neural network (BPNN)-based machine learning could predict the transport of P. aeruginosa through quartz sand with Tween 80 in-sample (2 CMC) and out-of-sample (10 CMC) with errors of 0.79% and 3.77%, respectively. This study sheds light on the full understanding of SEBR from the viewpoint of degrader facilitation.


Subject(s)
Biodegradation, Environmental , Machine Learning , Polysorbates , Pseudomonas aeruginosa , Surface-Active Agents , Polysorbates/chemistry , Surface-Active Agents/chemistry , Pseudomonas aeruginosa/drug effects , Soil Microbiology , Porosity , Soil Pollutants/chemistry
9.
Environ Res ; 251(Pt 2): 118673, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38493845

ABSTRACT

Both microplastics (MPs) and heavy metals are common soil pollutants and can interact to generate combined toxicity to soil ecosystems, but their impact on soil microbial communities (e.g., archaea and viruses) remains poorly studied. Here, metagenomic analysis was used to explore the response of soil microbiome in an agricultural soil exposed to MPs [i.e., polyethylene (PE), polystyrene (PS), and polylactic acid (PLA)] and/or Cd. Results showed that MPs had more profound effects on microbial community composition, diversity, and gene abundances when compared to Cd or their combination. Metagenomic analysis indicated that the gene taxonomic diversity and functional diversity of microbial communities varied with MPs type and dose. MPs affected the relative abundance of major microbial phyla and genera, while their coexistence with Cd influenced dominant fungi and viruses. Nitrogen-transforming and pathogenic genera, which were more sensitive to MPs variations, could serve as the indicative taxa for MPs contamination. High-dose PLA treatments (10%, w/w) not only elevated nitrogen metabolism and pathogenic genes, but also enriched copiotrophic microbes from the Proteobacteria phylum. Overall, MPs and Cd showed minimal interactions on soil microbial communities. This study highlights the microbial shifts due to co-occurring MPs and Cd, providing evidence for understanding their environmental risks.


Subject(s)
Cadmium , Metagenomics , Microplastics , Soil Microbiology , Soil Pollutants , Cadmium/toxicity , Cadmium/analysis , Soil Pollutants/toxicity , Soil Pollutants/analysis , Microplastics/toxicity , Agriculture , Microbiota/drug effects , Soil/chemistry , Bacteria/genetics , Bacteria/classification , Bacteria/drug effects
10.
Curr Microbiol ; 81(7): 185, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771339

ABSTRACT

The plastic film is extensively applied with limited recycling, leading to the long-run residue accumulation in soil, which offers a distinctive habitat for microorganisms, and creates a plastisphere. In this study, traditional low-density polyethylene (LDPE) plastic film and biodegradable polybutylene adipate terephthalate (PBAT) plastic film materials were selected to test their effects on soil microbial ecology. Based on high-throughput sequencing, compared to the soil environment, the alpha-diversity of bacterial communities in plastisphere was lower, and the abundance of Actinobacteria increased. Plastic film residues, as bacterial habitats, exhibited greater heterogeneity and harbor unique bacterial communities. The communities were distinguished between plastisphere and soil environment by means of a random-forest (RF) machine-learning model. Prominent distinctions emerged among bacterial functions between soil environment and plastisphere, especially regarding organics degradation. The neutral model and null model indicated that the constitution of bacterial communities was dominated by random processes except in LDPE plastisphere. The bacterial co-occurrence network of the plastisphere exhibited higher complexity and modularity. This study contributes to our comprehending of characteristics of plastisphere bacterial communities in soil environment and the associated ecological risks of plastic film residues accumulation.


Subject(s)
Bacteria , Polyethylene , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Polyethylene/chemistry , Polyesters/metabolism , Soil/chemistry , Soil Pollutants/analysis , Microbiota
11.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Article in English | MEDLINE | ID: mdl-33622792

ABSTRACT

Lignin is a biopolymer found in plant cell walls that accounts for 30% of the organic carbon in the biosphere. White-rot fungi (WRF) are considered the most efficient organisms at degrading lignin in nature. While lignin depolymerization by WRF has been extensively studied, the possibility that WRF are able to utilize lignin as a carbon source is still a matter of controversy. Here, we employ 13C-isotope labeling, systems biology approaches, and in vitro enzyme assays to demonstrate that two WRF, Trametes versicolor and Gelatoporia subvermispora, funnel carbon from lignin-derived aromatic compounds into central carbon metabolism via intracellular catabolic pathways. These results provide insights into global carbon cycling in soil ecosystems and furthermore establish a foundation for employing WRF in simultaneous lignin depolymerization and bioconversion to bioproducts-a key step toward enabling a sustainable bioeconomy.


Subject(s)
Fungi/metabolism , Lignin/metabolism , Metabolic Networks and Pathways , Biopolymers/metabolism , Biotransformation , Ecosystem , Organic Chemicals/metabolism , Soil Microbiology
12.
Biodegradation ; 35(5): 789-802, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38687420

ABSTRACT

Single-use facial masks which are predominantly made out of polypropylene is being used and littered in large quantities during post COVID-19 situation. Extensive researches on bioremediation of plastic pollution on soil led to the identification of numerous plastic degrading microorganisms. These organisms assimilate plastic polymers as their carbon source for synthesizing energy. Pseudomonas fluorescens (PF) is one among such microorganism which is being identified to biodegrade plastic polymers in controlled environment. The natural biodegradation of facial mask in soil-like fraction collected from municipal waste management site, bioaugmentation of the degradation process with Pseudomonas fluorescens, biostimulation of the soil with carbonless nutritional supplements and combined bioaugmentation with biostimulation process were studied in the present work. The study has been conducted both in controlled and in natural condition for a period of 12 months. The efficiency of the degradation was verified through FTIR analyses using carbonyl index, bond energy change, Loss in ignition (LOI) measurement along with CHNS analyses of residual substances. The analysis of results reported that carbonyl index (in terms of transmittance) was reduced to 46% of the control batch through the inclusion of PF in natural condition. The bioaugmented batch maintained in natural condition showed 33% reduction of LOI with respect to the control batch. The unburnt carbon content of the residual matter obtained from the furnace were analysed using CHNS analyser and indicated the lowest carbon content in the same bioaugmented batch. In this study, an attempt is made to verify the feasibility of enhancing biodegradation of single-use facial mask by bioaugmentation of soil-like fraction available in solid waste management park with Pseudomonas fluorescens under natural condition. CHNS and FTIR analysis assures the biodegradation of plastic waste in the soil-like fraction using Pseudomonas fluorescens under both controlled and natural environmental condition.


Subject(s)
Biodegradation, Environmental , Plastics , Pseudomonas fluorescens , Solid Waste , Pseudomonas fluorescens/metabolism , Plastics/metabolism , Soil/chemistry , Soil Microbiology , Waste Management/methods , Soil Pollutants/metabolism , Spectroscopy, Fourier Transform Infrared , Refuse Disposal/methods
13.
Ecotoxicol Environ Saf ; 280: 116541, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38848637

ABSTRACT

Although accumulating evidence indicates that endangered animals suffer from plastic pollution, this has been largely overlooked. Here, we explored the bacteria and eukaryotes living in the plastics gathered from the natural habitat of the highly endangered crocodile lizard. The results demonstrated that the bacterial and eukaryotic communities on plastics formed a unique ecosystem that exhibited lower diversity than those in the surrounding water and soil. However, microbes displayed a more complex and stable network on plastic than that in water or soil, implying unique mechanisms of stabilization. These mechanisms enhanced their resilience and contributed to the provision of stable ecological services. Eukaryotes formed a simpler and smaller network than bacteria, indicating different survival strategies. The bacteria residing on the plastics played a significant role in carbon transformation and sequestration, which likely impacted carbon cycling in the habitat. Furthermore, microbial exchange between plastics and the crocodile lizard was observed, suggesting that plastisphere serves as a mobile gene bank for the exchange of information, including potentially harmful substances. Overall, microbes on plastic appear to significantly impact the crocodile lizard and its natural habitat via various pathways. These results provided novel insights into risks evaluation of plastic pollution and valuable guidance for government efforts in plastic pollutant control in nature reserves.


Subject(s)
Bacteria , Ecosystem , Endangered Species , Lizards , Plastics , Animals , Environmental Monitoring , Eukaryota , Phenotype , Soil Microbiology
14.
Ecotoxicol Environ Saf ; 270: 115946, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38194808

ABSTRACT

With a growing number of research reports on microplastics (MPs), there is increasing concern regarding MPs-induced contamination in soil ecological systems. Notwithstanding, the interaction between the plastisphere and rhizosphere microbial hotspots in soil-plant systems, as well as the diversity and composition of plastisphere microbial communities in such systems, remain largely unexplored. This study evaluated the response of rhizosphere bacterial communities to MPs at three growth stages of pepper and examined the bacterial communities present on MPs (plastisphere). The 16 S rRNA revealed that, under the stress of MPs, the Chao1 and Shannon index of the pepper soil bacterial community decreased. Meanwhile the relative abundance of Actinobacteriota was decreased, and that of Proteobacteria was increased. Furthermore, the plastisphere serves as a unique microbial habitat (niche) that recruits the colonization of specific bacterial groups, including potential plastic-degrading bacteria and potential pathogens (e.g., Massilia and Pseudomonas). Simultaneously, the plastisphere recruits specific bacteria that may impact the rhizosphere soil bacterial communities, thus indirectly affecting plant growth. Functional prediction using PICRUSt2 revealed higher activity in the plastisphere for Metabolism of terpenoids and polyketides, Human diseases, and Xenobiotics biodegradation and metabolism. Notably, the human diseases metabolic pathway exhibited increased activity, suggesting potential ecological risks associated with pathogens. These results highlighted that the plastisphere serves as a unique microbial habitat (niche) in the soil ecological systems, recruiting specific bacteria and potentially interfering with the surrounding soil microbial community, thereby influencing the functional characteristics of the soil ecological systems.


Subject(s)
Capsicum , Soil , Humans , Plastics , Rhizosphere , Soil Microbiology , Bacteria/genetics , Microplastics
15.
Ecotoxicol Environ Saf ; 271: 115935, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211514

ABSTRACT

The accumulation of microplastics in agricultural soil brings unexpected adverse effects on crop growth and soil quality, which is threatening the sustainability of agriculture. Biochar is an emerging soil amendment material of interest as it can remediate soil pollutants. However, the mechanisms underlying biochar alleviated the toxic effects of microplastics in crops and soil were largely unknown. Using a common economic crop, peanut as targeted species, the present study evaluated the plant physiologica and molecular response and rhizosphere microbiome when facing microplastic contamination and biochar amendment. Transcriptome and microbiome analyses were conducted on peanut root and rhizosphere soil treated with CK (no microplastic and no biochar addition), MP (1.5% polystyrene microplastic addition) and MB (1.5% polystyrene microplastic+2% peanut shell biochar addition). The results indicated that microplastics had inhibitory effects on plant root development and rhizosphere bacterial diversity and function. However, biochar application could significantly promote the expressions of key genes associated with antioxidant activities, lignin synthesis, nitrogen transport and energy metabolism to alleviate the reactive oxygen species stress, root structure damage, nutrient transport limitation, and energy metabolism inhibition induced by microplastic contamination on the root. In addition, the peanut rhizosphere microbiome results showed that biochar application could restore the diversity and richness of microbial communities inhibited by microplastic contamination and promote nutrient availability of rhizosphere soil by regulating the abundance of nitrogen cycling-related and organic matter decomposition-related microbial communities. Consequently, the application of biochar could enhance root development by promoting oxidative stress resistance, nitrogen transport and energy metabolism and benefit the rhizosphere microecological environment for root development, thereby improved the plant-soil system health of microplastic-contaminated agroecosystem.


Subject(s)
Microplastics , Soil , Soil/chemistry , Microplastics/toxicity , Plastics , Rhizosphere , Polystyrenes , Charcoal/pharmacology , Arachis , Nitrogen/analysis , Soil Microbiology
16.
Ecotoxicol Environ Saf ; 277: 116380, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38677068

ABSTRACT

The interaction between microplastics (MPs) and cadmium (Cd) poses a threat to agricultural soil environments, and their effects on plant growth and rhizosphere microbial community functions are not yet clear. In this study, energy sorghum was used as a test plant to investigate the effects of two types of MPs, polystyrene (PS) and polyethylene (PE), at different particle sizes (13 µm, 550 µm) and concentrations (0.1%, 1% w/w), and Cd, as well as their interactions, on the growth of sorghum in a soil-cultivation pot experiment. The results showed that the combined effects of MP and Cd pollution on the dry weight and Cd accumulation rate in sorghum varied depending on the type, concentration, and particle size of the MPs, with an overall trend of increasing stress from combined pollution with increasing Cd content and accumulation. High-throughput sequencing analysis revealed that combined MP and Cd pollution increased bacterial diversity, and the most significant increase was observed in the abundance-based coverage estimator (ACE), Shannon, and Sobs indices in the 13 µm 1% PS+Cd treatment group. Metagenomic analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways revealed that 19 groups of metabolic pathways, including microbial metabolism and methane metabolism, differed significantly under combined MP and Cd pollution. Hierarchical clustering results indicated that Cd treatment and combined MP and Cd treatment affected the abundances of sorghum rhizosphere soil nitrogen (N) and phosphorus (P) cycling genes and that the type of MP present was an important factor affecting N and P cycling genes. The results of this study provide a basis for exploring the toxic effects of combined MP and Cd pollution and for conducting soil environmental risk assessments.


Subject(s)
Cadmium , Microplastics , Rhizosphere , Soil Microbiology , Soil Pollutants , Sorghum , Sorghum/drug effects , Sorghum/microbiology , Cadmium/toxicity , Soil Pollutants/toxicity , Microplastics/toxicity , Soil/chemistry , Particle Size , Bacteria/drug effects
17.
Ecotoxicol Environ Saf ; 281: 116683, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964061

ABSTRACT

Soil pollution by microplastics (MPs), defined as plastic particles <5 mm, and heavy metals is a significant environmental issue. However, studies on the co-contamination effects of MPs and heavy metals on buckwheat rhizosphere microorganisms, especially on the arbuscular mycorrhizal fungi (AMF) community, are limited. We introduced low (0.01 g kg-1) and high doses of lead (Pb) (2 g kg-1) along with polyethylene (PE) and polylactic acid (PLA) MPs, both individually and in combination, into soil and assessed soil properties, buckwheat growth, and rhizosphere bacterial and AMF communities in a 40-day pot experiment. Notable alterations were observed in soil properties such as pH, alkaline hydrolyzable nitrogen (AN), and the available Pb (APb). High-dose Pb combined with PLA-MPs hindered buckwheat growth. Compared to the control, bacterial Chao1 richness and Shannon diversity were lower in the high dose Pb with PLA treatment, and differentially abundant bacteria were mainly detected in the high Pb dose treatments. Variations in bacterial communities correlated with APb, pH and AN. Overall, the AMF community composition remained largely consistent across all treatments. This phenomenon may be due to fungi having lower nutritional demands than bacteria. Stochastic processes played a relatively important role in the assembly of both bacterial and AMF communities. In summary, MPs appeared to amplify both the positive and negative effects of high Pb doses on the buckwheat rhizosphere bacteria.


Subject(s)
Fagopyrum , Lead , Microplastics , Mycorrhizae , Rhizosphere , Soil Microbiology , Soil Pollutants , Soil Pollutants/toxicity , Soil Pollutants/analysis , Mycorrhizae/drug effects , Lead/toxicity , Microplastics/toxicity , Bacteria/drug effects , Bacteria/classification , Bacteria/growth & development , Soil/chemistry
18.
Ecotoxicol Environ Saf ; 279: 116518, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38820874

ABSTRACT

Microplastics (MP) can influence a plethora of fungal species within the rhizosphere. Nevertheless, there are few studies on the direct impacts of MPs on soil fungi and their intricate interplay with plants. Here, we investigated the impact of polyethylene microspheres (PEMS) on the ecological interactions between Fusarium solani, a plant pathogenic fungus, and Trichoderma viride, a fungal plant growth promotor, within the rhizosphere of Solanum lycopersicum (tomato). Spores of F. solani and T. viride were pre-incubated with PEMS at two concentrations, 100 and 1000 mg L-1. Mycelium growth, sporulation, spore germination, and elongation were evaluated. Tomato seeds were exposed to fungal spore suspensions treated with PEMS, and plant development was subsequently assessed after 4 days. The results showed that PEMS significantly enhanced the sporulation (106.0 % and 70.1 %) but compromised the spore germination (up to 27.3 % and 32.2 %) and radial growth (up to -5.2% and -21.7 %) of F. solani and T. viride, respectively. Furthermore, the 100 and 1000 mg L-1 concentrations of PEMS significantly (p<0.05) enhanced the mycelium density of T. viride (9.74 % and 22.30 %, respectively), and impaired the germ-tube elongation of F. solani after 4 h (16.16 % and 11.85 %, respectively) and 8 h (4 % and 17.10 %, respectively). In addition, PEMS amplified the pathogenicity of F. solani and boosted the bio-enhancement effect of T. viride on tomato root growth. Further, PEMS enhanced the bio-fungicidal effect of T. viride toward F. solani (p<0.05). In summary, PEMS had varying effects on F. solani and T. viride, impacting their interactions and influencing their relationship with tomato plants. It intensified the beneficial effects of T. viride and increased the aggressiveness of F. solani. This study highlights concerns regarding the effects of MPs on fungal interactions in the rhizosphere, which are essential for crop soil colonization and resource utilization.


Subject(s)
Fusarium , Microplastics , Solanum lycopersicum , Spores, Fungal , Solanum lycopersicum/microbiology , Solanum lycopersicum/growth & development , Solanum lycopersicum/drug effects , Fusarium/physiology , Fusarium/growth & development , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Microplastics/toxicity , Rhizosphere , Soil Microbiology , Soil Pollutants/toxicity , Polyethylene , Hypocreales/drug effects , Hypocreales/physiology , Microspheres , Plant Roots/microbiology , Plant Roots/growth & development , Plant Roots/drug effects
19.
Int J Mol Sci ; 25(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39063077

ABSTRACT

Rice straw is an agricultural waste, the disposal of which through open burning is an emerging challenge for ecology. Green manufacturing using straw returning provides a more avant-garde technique that is not only an effective management measure to improve soil fertility in agricultural ecosystems but also nurtures environmental stewardship by reducing waste and the carbon footprint. However, fresh straw that is returned to the field cannot be quickly decomposed, and screening microorganisms with the capacity to degrade straw and understanding their mechanism of action is an efficient approach to solve such problems. This study aimed to reveal the potential mechanism of influence exerted by exogenous degradative bacteria (ZJW-6) on the degradation of straw, growth of plants, and soil bacterial community during the process of returning rice straw to the soil. The inoculation with ZJW-6 enhanced the driving force of cellulose degradation. The acceleration of the rate of decomposition of straw releases nutrients that are easily absorbed by rice (Oryza sativa L.), providing favorable conditions for its growth and promoting its growth and development; prolongs the photosynthetic functioning period of leaves; and lays the material foundation for high yields of rice. ZJW-6 not only directly participates in cellulose degradation as degrading bacteria but also induces positive interactions between bacteria and fungi and enriches the microbial taxa that were related to straw degradation, enhancing the rate of rice straw degradation. Taken together, ZJW-6 has important biological potential and should be further studied, which will provide new insights and strategies for the appropriate treatment of rice straw. In the future, this degrading bacteria may provide a better opportunity to manage straw in an ecofriendly manner.


Subject(s)
Bacteria , Oryza , Soil Microbiology , Oryza/microbiology , Oryza/growth & development , Oryza/metabolism , Bacteria/metabolism , Bacteria/growth & development , Plant Stems/microbiology , Plant Stems/metabolism , Cellulose/metabolism , Biodegradation, Environmental , Agriculture/methods , Soil/chemistry
20.
J Environ Manage ; 365: 121677, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38963955

ABSTRACT

Composting additives can significantly enhance green waste (GW) composting. However, their effectiveness is limited due to the short action duration of a single-period addition. Therefore, this study proposes that multi-period additive modes to prolong the action duration, expedite lignocellulose degradation, reduce composting time, and enhance product quality. This study conducted six treatments (T1-T6), introducing a compound additive (BLP) during the mesophilic (MP) and cooling periods (CP). Each treatment consistently maintained 25% total BLP addition of GW dry weight, with variations only in the BLP distribution in different periods. The composition of BLP consists of Wbiochar: Wlactic acid: Wpond sediment in a ratio of 10:1:40. Specifically, T1 added 25% BLP in CP, T2 added 5% in MP and 20% in CP, T3 added 10% in MP and 15% in CP, T4 added 15% in MP and 10% in CP, T5 added 20% in MP and 5% in CP, and T6 added 25% in MP. In this study, composting temperature, pH value, electrical conductivity, total porosity, the contents of lignin, cellulose, hemicellulose, and nutrient, scanning electron microscopy images, germination index, and the successions of different bacteria and fungi at the phylum and genus levels were detailed. Results showed T4 achieved two thermophilic periods and matured in just 25 days. T4 enhanced lignocellulose degradation rates (lignin: 16-53%, cellulose: 14-23%, hemicellulose: 9-48%) and improved nutrient content. The above results, combined with correlation analysis and structural equation model, indicated that T4 may promote the development of dominant bacteria (Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes) by regulating compost physicochemical properties and facilitate the growth of dominant fungi (Ascomycota and Basidiomycota) by modulating nutrient supply capacity. This ultimately leads to a microbial community structure more conducive to lignocellulose degradation and nutrient preservation. In summary, this study reveals the comprehensive effects of single-period and multi-period addition methods on GW composting, providing a valuable basis for optimizing the use of additives and enhancing the efficiency and quality of GW composting.


Subject(s)
Composting , Lignin , Soil/chemistry , Soil Microbiology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL