Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29.899
Filter
Add more filters

Publication year range
1.
Nature ; 621(7979): 586-591, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37704725

ABSTRACT

Many animal- and plant-pathogenic bacteria use a type III secretion system to deliver effector proteins into host cells1,2. Elucidation of how these effector proteins function in host cells is critical for understanding infectious diseases in animals and plants3-5. The widely conserved AvrE-family effectors, including DspE in Erwinia amylovora and AvrE in Pseudomonas syringae, have a central role in the pathogenesis of diverse phytopathogenic bacteria6. These conserved effectors are involved in the induction of 'water soaking' and host cell death that are conducive to bacterial multiplication in infected tissues. However, the exact biochemical functions of AvrE-family effectors have been recalcitrant to mechanistic understanding for three decades. Here we show that AvrE-family effectors fold into a ß-barrel structure that resembles bacterial porins. Expression of AvrE and DspE in Xenopus oocytes results in inward and outward currents, permeability to water and osmolarity-dependent oocyte swelling and bursting. Liposome reconstitution confirmed that the DspE channel alone is sufficient to allow the passage of small molecules such as fluorescein dye. Targeted screening of chemical blockers based on the predicted pore size (15-20 Å) of the DspE channel identified polyamidoamine dendrimers as inhibitors of the DspE/AvrE channels. Notably, polyamidoamines broadly inhibit AvrE and DspE virulence activities in Xenopus oocytes and during E. amylovora and P. syringae infections. Thus, we have unravelled the biochemical function of a centrally important family of bacterial effectors with broad conceptual and practical implications in the study of bacterial pathogenesis.


Subject(s)
Bacterial Proteins , Plant Cells , Plant Diseases , Porins , Water , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cell Death , Fluorescein/metabolism , Liposomes/metabolism , Oocytes/metabolism , Oocytes/microbiology , Plant Cells/metabolism , Plant Cells/microbiology , Plant Diseases/microbiology , Porins/chemistry , Porins/metabolism , Protein Folding , Solutions/metabolism , Water/metabolism , Xenopus laevis , Osmolar Concentration
2.
Nature ; 624(7991): 295-302, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092907

ABSTRACT

Connecting different electronic devices is usually straightforward because they have paired, standardized interfaces, in which the shapes and sizes match each other perfectly. Tissue-electronics interfaces, however, cannot be standardized, because tissues are soft1-3 and have arbitrary shapes and sizes4-6. Shape-adaptive wrapping and covering around irregularly sized and shaped objects have been achieved using heat-shrink films because they can contract largely and rapidly when heated7. However, these materials are unsuitable for biological applications because they are usually much harder than tissues and contract at temperatures higher than 90 °C (refs. 8,9). Therefore, it is challenging to prepare stimuli-responsive films with large and rapid contractions for which the stimuli and mechanical properties are compatible with vulnerable tissues and electronic integration processes. Here, inspired by spider silk10-12, we designed water-responsive supercontractile polymer films composed of poly(ethylene oxide) and poly(ethylene glycol)-α-cyclodextrin inclusion complex, which are initially dry, flexible and stable under ambient conditions, contract by more than 50% of their original length within seconds (about 30% per second) after wetting and become soft (about 100 kPa) and stretchable (around 600%) hydrogel thin films thereafter. This supercontraction is attributed to the aligned microporous hierarchical structures of the films, which also facilitate electronic integration. We used this film to fabricate shape-adaptive electrode arrays that simplify the implantation procedure through supercontraction and conformally wrap around nerves, muscles and hearts of different sizes when wetted for in vivo nerve stimulation and electrophysiological signal recording. This study demonstrates that this water-responsive material can play an important part in shaping the next-generation tissue-electronics interfaces as well as broadening the biomedical application of shape-adaptive materials.


Subject(s)
Electrophysiology , Polymers , Water , Animals , alpha-Cyclodextrins/chemistry , Electrodes , Electrophysiology/instrumentation , Electrophysiology/methods , Electrophysiology/trends , Heart , Muscles , Polyethylene Glycols/chemistry , Polymers/chemistry , Silk/chemistry , Spiders , Water/chemistry , Hydrogels/chemistry , Electronics/instrumentation , Electronics/methods , Electronics/trends
3.
Nature ; 621(7979): 511-515, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37553075

ABSTRACT

Plywood is widely used in construction, such as for flooring and interior walls, as well as in the manufacture of household items such as furniture and cabinets. Such items are made of wood veneers that are bonded together with adhesives such as urea-formaldehyde and phenol-formaldehyde resins1,2. Researchers in academia and industry have long aimed to synthesize lignin-phenol-formaldehyde resin adhesives using biomass-derived lignin, a phenolic polymer that can be used to substitute the petroleum-derived phenol3-6. However, lignin-phenol-formaldehyde resin adhesives are less attractive to plywood manufacturers than urea-formaldehyde and phenol-formaldehyde resins owing to their appearance and cost. Here we report a simple and practical strategy for preparing lignin-based wood adhesives from lignocellulosic biomass. Our strategy involves separation of uncondensed or slightly condensed lignins from biomass followed by direct application of a suspension of the lignin and water as an adhesive on wood veneers. Plywood products with superior performances could be prepared with such lignin adhesives at a wide range of hot-pressing temperatures, enabling the use of these adhesives as promising alternatives to traditional wood adhesives in different market segments. Mechanistic studies indicate that the adhesion mechanism of such lignin adhesives may involve softening of lignin by water, filling of vessels with softened lignin and crosslinking of lignins in adhesives with those in the cell wall.


Subject(s)
Adhesives , Lignin , Wood , Adhesives/chemistry , Formaldehyde/chemistry , Lignin/chemistry , Phenols/chemistry , Urea/chemistry , Water/chemistry , Wood/chemistry , Biomass , Hot Temperature
4.
Nature ; 609(7929): 1029-1037, 2022 09.
Article in English | MEDLINE | ID: mdl-36104562

ABSTRACT

Advancing the spontaneous bottom-up construction of artificial cells with high organizational complexity and diverse functionality remains an unresolved issue at the interface between living and non-living matter1-4. Here, to address this challenge, we developed a living material assembly process based on the capture and on-site processing of spatially segregated bacterial colonies within individual coacervate microdroplets for the endogenous construction of membrane-bounded, molecularly crowded, and compositionally, structurally and morphologically complex synthetic cells. The bacteriogenic protocells inherit diverse biological components, exhibit multifunctional cytomimetic properties and can be endogenously remodelled to include a spatially partitioned DNA-histone nucleus-like condensate, membranized water vacuoles and a three-dimensional network of F-actin proto-cytoskeletal filaments. The ensemble is biochemically energized by ATP production derived from implanted live Escherichia coli cells to produce a cellular bionic system with amoeba-like external morphology and integrated life-like properties. Our results demonstrate a bacteriogenic strategy for the bottom-up construction of functional protoliving microdevices and provide opportunities for the fabrication of new synthetic cell modules and augmented living/synthetic cell constructs with potential applications in engineered synthetic biology and biotechnology.


Subject(s)
Artificial Cells , Escherichia coli , Microbial Viability , Synthetic Biology , Actin Cytoskeleton/chemistry , Actins/chemistry , Adenosine Triphosphate/metabolism , Artificial Cells/chemistry , Biotechnology , Escherichia coli/cytology , Histones/chemistry , Vacuoles/chemistry , Water/chemistry
5.
Proc Natl Acad Sci U S A ; 121(21): e2318905121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739787

ABSTRACT

We propose that spontaneous folding and molecular evolution of biopolymers are two universal aspects that must concur for life to happen. These aspects are fundamentally related to the chemical composition of biopolymers and crucially depend on the solvent in which they are embedded. We show that molecular information theory and energy landscape theory allow us to explore the limits that solvents impose on biopolymer existence. We consider 54 solvents, including water, alcohols, hydrocarbons, halogenated solvents, aromatic solvents, and low molecular weight substances made up of elements abundant in the universe, which may potentially take part in alternative biochemistries. We find that along with water, there are many solvents for which the liquid regime is compatible with biopolymer folding and evolution. We present a ranking of the solvents in terms of biopolymer compatibility. Many of these solvents have been found in molecular clouds or may be expected to occur in extrasolar planets.


Subject(s)
Solvents , Biopolymers/chemistry , Solvents/chemistry , Extraterrestrial Environment/chemistry , Evolution, Molecular , Water/chemistry
6.
Chem Rev ; 124(6): 3037-3084, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38437627

ABSTRACT

Proteins are highly labile molecules, thus requiring the presence of appropriate solvents and excipients in their liquid milieu to keep their stability and biological activity. In this field, ionic liquids (ILs) have gained momentum in the past years, with a relevant number of works reporting their successful use to dissolve, stabilize, extract, and purify proteins. Different approaches in protein-IL systems have been reported, namely, proteins dissolved in (i) neat ILs, (ii) ILs as co-solvents, (iii) ILs as adjuvants, (iv) ILs as surfactants, (v) ILs as phase-forming components of aqueous biphasic systems, and (vi) IL-polymer-protein/peptide conjugates. Herein, we critically analyze the works published to date and provide a comprehensive understanding of the IL-protein interactions affecting the stability, conformational alteration, unfolding, misfolding, and refolding of proteins while providing directions for future studies in view of imminent applications. Overall, it has been found that the stability or purification of proteins by ILs is bispecific and depends on the structure of both the IL and the protein. The most promising IL-protein systems are identified, which is valuable when foreseeing market applications of ILs, e.g., in "protein packaging" and "detergent applications". Future directions and other possibilities of IL-protein systems in light-harvesting and biotechnology/biomedical applications are discussed.


Subject(s)
Ionic Liquids , Ionic Liquids/chemistry , Proteins/chemistry , Solvents/chemistry , Water/chemistry , Polymers
7.
Nature ; 585(7823): 129-134, 2020 09.
Article in English | MEDLINE | ID: mdl-32848250

ABSTRACT

Transmembrane channels and pores have key roles in fundamental biological processes1 and in biotechnological applications such as DNA nanopore sequencing2-4, resulting in considerable interest in the design of pore-containing proteins. Synthetic amphiphilic peptides have been found to form ion channels5,6, and there have been recent advances in de novo membrane protein design7,8 and in redesigning naturally occurring channel-containing proteins9,10. However, the de novo design of stable, well-defined transmembrane protein pores that are capable of conducting ions selectively or are large enough to enable the passage of small-molecule fluorophores remains an outstanding challenge11,12. Here we report the computational design of protein pores formed by two concentric rings of α-helices that are stable and monodisperse in both their water-soluble and their transmembrane forms. Crystal structures of the water-soluble forms of a 12-helical pore and a 16-helical pore closely match the computational design models. Patch-clamp electrophysiology experiments show that, when expressed in insect cells, the transmembrane form of the 12-helix pore enables the passage of ions across the membrane with high selectivity for potassium over sodium; ion passage is blocked by specific chemical modification at the pore entrance. When incorporated into liposomes using in vitro protein synthesis, the transmembrane form of the 16-helix pore-but not the 12-helix pore-enables the passage of biotinylated Alexa Fluor 488. A cryo-electron microscopy structure of the 16-helix transmembrane pore closely matches the design model. The ability to produce structurally and functionally well-defined transmembrane pores opens the door to the creation of designer channels and pores for a wide variety of applications.


Subject(s)
Computer Simulation , Genes, Synthetic/genetics , Ion Channels/chemistry , Ion Channels/genetics , Models, Molecular , Synthetic Biology , Cell Line , Cryoelectron Microscopy , Crystallography, X-Ray , Electric Conductivity , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrazines , Ion Channels/metabolism , Ion Transport , Liposomes/metabolism , Patch-Clamp Techniques , Porins/chemistry , Porins/genetics , Porins/metabolism , Protein Engineering , Protein Structure, Secondary , Solubility , Water/chemistry
8.
Proc Natl Acad Sci U S A ; 120(8): e2213030120, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36791112

ABSTRACT

Load-bearing soft tissues normally show J-shaped stress-strain behaviors with high compliance at low strains yet high strength at high strains. They have high water content but are still tough and durable. By contrast, naturally derived hydrogels are weak and brittle. Although hydrogels prepared from synthetic polymers can be strong and tough, they do not have the desired bioactivity for emerging biomedical applications. Here, we present a thermomechanical approach to replicate the combinational properties of soft tissues in protein-based photocrosslinkable hydrogels. As a demonstration, we create a gelatin methacryloyl fiber hydrogel with soft tissue-like mechanical properties, such as low Young's modulus (0.1 to 0.3 MPa), high strength (1.1 ± 0.2 MPa), high toughness (9,100 ± 2,200 J/m3), and high fatigue resistance (2,300 ± 500 J/m2). This hydrogel also resembles the biochemical and architectural properties of native extracellular matrix, which enables a fast formation of 3D interconnected cell meshwork inside hydrogels. The fiber architecture also regulates cellular mechanoresponse and supports cell remodeling inside hydrogels. The integration of tissue-like mechanical properties and bioactivity is highly desirable for the next-generation biomaterials and could advance emerging fields such as tissue engineering and regenerative medicine.


Subject(s)
Biocompatible Materials , Hydrogels , Hydrogels/chemistry , Biocompatible Materials/chemistry , Tissue Engineering , Water/chemistry , Polymers
9.
J Neurosci ; 44(11)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38316563

ABSTRACT

Cooling sensations arise inside the mouth during ingestive and homeostasis behaviors. Oral presence of cooling temperature engages the cold and menthol receptor TRPM8 (transient receptor potential melastatin 8) on trigeminal afferents. Yet, how TRPM8 influences brain and behavioral responses to oral temperature is undefined. Here we used in vivo neurophysiology to record action potentials stimulated by cooling and warming of oral tissues from trigeminal nucleus caudalis neurons in female and male wild-type and TRPM8 gene deficient mice. Using these lines, we also measured orobehavioral licking responses to cool and warm water in a novel, temperature-controlled fluid choice test. Capture of antidromic electrophysiological responses to thalamic stimulation identified that wild-type central trigeminal neurons showed diverse responses to oral cooling. Some neurons displayed relatively strong excitation to cold <10°C (COLD neurons) while others responded to only a segment of mild cool temperatures below 30°C (COOL neurons). Notably, TRPM8 deficient mice retained COLD-type but lacked COOL cells. This deficit impaired population responses to mild cooling temperatures below 30°C and allowed warmth-like (≥35°C) neural activity to pervade the normally innocuous cool temperature range, predicting TRPM8 deficient mice would show anomalously similar orobehavioral responses to warm and cool temperatures. Accordingly, TRPM8 deficient mice avoided both warm (35°C) and mild cool (≤30°C) water and sought colder temperatures in fluid licking tests, whereas control mice avoided warm but were indifferent to mild cool and colder water. Results imply TRPM8 input separates cool from warm temperature sensing and suggest other thermoreceptors also participate in oral cooling sensation.


Subject(s)
TRPM Cation Channels , Mice , Male , Animals , Female , TRPM Cation Channels/genetics , Cold Temperature , Neurons , Temperature , Thermosensing/physiology , Water
10.
Nature ; 575(7781): 169-174, 2019 11.
Article in English | MEDLINE | ID: mdl-31666696

ABSTRACT

Two dry surfaces can instantly adhere upon contact with each other through intermolecular forces such as hydrogen bonds, electrostatic interactions and van der Waals interactions1,2. However, such instant adhesion is challenging when wet surfaces such as body tissues are involved, because water separates the molecules of the two surfaces, preventing interactions3,4. Although tissue adhesives have potential advantages over suturing or stapling5,6, existing liquid or hydrogel tissue adhesives suffer from several limitations: weak bonding, low biological compatibility, poor mechanical match with tissues, and slow adhesion formation5-13. Here we propose an alternative tissue adhesive in the form of a dry double-sided tape (DST) made from a combination of a biopolymer (gelatin or chitosan) and crosslinked poly(acrylic acid) grafted with N-hydrosuccinimide ester. The adhesion mechanism of this DST relies on the removal of interfacial water from the tissue surface, resulting in fast temporary crosslinking to the surface. Subsequent covalent crosslinking with amine groups on the tissue surface further improves the adhesion stability and strength of the DST. In vitro mouse, in vivo rat and ex vivo porcine models show that the DST can achieve strong adhesion between diverse wet dynamic tissues and engineering solids within five seconds. The DST may be useful as a tissue adhesive and sealant, and in adhering wearable and implantable devices to wet tissues.


Subject(s)
Adhesiveness , Adhesives/chemistry , Heart , Lung , Prostheses and Implants , Stomach , Wettability , Acrylic Resins/chemistry , Animals , Chitosan/chemistry , Cross-Linking Reagents/chemistry , Desiccation , Gelatin/chemistry , Heart/anatomy & histology , Hydrogels/chemistry , Hydrogen Bonding , Lung/anatomy & histology , Lung/chemistry , Mice , Rats , Static Electricity , Stomach/anatomy & histology , Stomach/chemistry , Swine , Time Factors , Water/analysis , Water/chemistry , Wearable Electronic Devices
11.
Proc Natl Acad Sci U S A ; 119(49): e2212497119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36454753

ABSTRACT

Nanoconfined few-molecule water clusters are invaluable systems to study fundamental aspects of hydrogen bonding. Unfortunately, most experiments on water clusters must be performed at cryogenic temperatures. Probing water clusters in noncryogenic systems is however crucial to understand the behavior of confined water in atmospheric or biological settings, but such systems usually require either complex synthesis and/or introduce many confounding external bonds to the clusters. Here, we show that combining Raman spectroscopy with the molecular nanocapsule cucurbituril is a powerful technique to sequester and analyze water clusters in ambient conditions. We observe sharp peaks in vibrational spectra arising from a single rigid confined water dimer. The high resolution and rich information in these vibrational spectra allow us to track specific isotopic exchanges inside the water dimer, verified with density-functional theory and kinetic population modeling. We showcase the versatility of such molecular nanocapsules by tracking water cluster vibrations through systematic changes in confinement size, in temperatures up to 120° C, and in their chemical environment.


Subject(s)
Nanocapsules , Vibration , Water , Polymers , Spectrum Analysis, Raman
12.
Proc Natl Acad Sci U S A ; 119(43): e2211042119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36252006

ABSTRACT

Various forms of ecological monitoring and disease diagnosis rely upon the detection of amphiphiles, including lipids, lipopolysaccharides, and lipoproteins, at ultralow concentrations in small droplets. Although assays based on droplets' wettability provide promising options in some cases, their reliance on the measurements of surface and bulk properties of whole droplets (e.g., contact angles, surface tensions) makes it difficult to monitor trace amounts of these amphiphiles within small-volume samples. Here, we report a design principle in which self-assembled monolayer-functionalized microstructured surfaces coated with silicone oil create locally disordered regions within a droplet's contact lines to effectively concentrate amphiphiles within the areas that dominate the droplet static friction. Remarkably, such surfaces enable the ultrasensitive, naked-eye detection of amphiphiles through changes in the droplets' sliding angles, even when the concentration is four to five orders of magnitude below their critical micelle concentration. We develop a thermodynamic model to explain the partitioning of amphiphiles at the contact line by their cooperative association within the disordered, loosely packed regions of the self-assembled monolayer. Based on this local analyte concentrating effect, we showcase laboratory-on-a-chip surfaces with positionally dependent pinning forces capable of both detecting industrially and biologically relevant amphiphiles (e.g., bacterial endotoxins), as well as sorting aqueous droplets into discrete groups based on their amphiphile concentrations. Furthermore, we demonstrate that the sliding behavior of amphiphile-laden aqueous droplets provides insight into the amphiphile's effective length, thereby allowing these surfaces to discriminate between analytes with highly disparate molecular sizes.


Subject(s)
Micelles , Silicone Oils , Lipopolysaccharides , Surface Tension , Water , Wettability
13.
Proc Natl Acad Sci U S A ; 119(44): e2209109119, 2022 11.
Article in English | MEDLINE | ID: mdl-36279442

ABSTRACT

Debris flows are dense and fast-moving complex suspensions of soil and water that threaten lives and infrastructure. Assessing the hazard potential of debris flows requires predicting yield and flow behavior. Reported measurements of rheology for debris flow slurries are highly variable and sometimes contradictory due to heterogeneity in particle composition and volume fraction ([Formula: see text]) and also inconsistent measurement methods. Here we examine the composition and flow behavior of source materials that formed the postwildfire debris flows in Montecito, CA, in 2018, for a wide range of [Formula: see text] that encapsulates debris flow formation by overland flow. We find that shear viscosity and yield stress are controlled by the distance from jamming, [Formula: see text], where the jamming fraction [Formula: see text] is a material parameter that depends on grain size polydispersity and friction. By rescaling shear and viscous stresses to account for these effects, the data collapse onto a simple nondimensional flow curve indicative of a Bingham plastic (viscoplastic) fluid. Given the highly nonlinear dependence of rheology on [Formula: see text], our findings suggest that determining the jamming fraction for natural materials will significantly improve flow models for geophysical suspensions such as hyperconcentrated flows and debris flows.


Subject(s)
Soil , Water , Suspensions , Rheology/methods , Plastics
14.
Proc Natl Acad Sci U S A ; 119(42): e2206685119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215508

ABSTRACT

Liquid embolic agents are widely used for the endovascular embolization of vascular conditions. However, embolization based on phase transition is limited by the adhesion of the microcatheter to the embolic agent, use of an organic solvent, unintentional catheter retention, and other complications. By mimicking thrombus formation, a water-soluble polymer that rapidly glues blood into a gel without triggering coagulation was developed. The polymer, which consists of cationic and aromatic residues with adjacent sequences, shows electrostatic adhesion with negatively charged blood substances in a physiological environment, while common polycations cannot. Aqueous polymer solutions are injectable through clinical microcatheters and needles. The formed blood gel neither adhered to the catheter nor blocked the port. Postoperative computed tomography imaging showed that the polymer can block the rat femoral artery in vivo and remain at the injection site without nontarget embolization. This study provides an alternative for the development of waterborne embolic agents.


Subject(s)
Embolization, Therapeutic , Water , Animals , Embolization, Therapeutic/methods , Polymers , Rats , Solvents , Static Electricity , Water/chemistry
15.
Proc Natl Acad Sci U S A ; 119(32): e2203962119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35858377

ABSTRACT

Biological tissues, such as cartilage, tendon, ligament, skin, and plant cell wall, simultaneously achieve high water content and high load-bearing capacity. The high water content enables the transport of nutrients and wastes, and the high load-bearing capacity provides structural support for the organisms. These functions are achieved through nanostructures. This biological fact has inspired synthetic mimics, but simultaneously achieving both functions has been challenging. The main difficulty is to construct nanostructures of high load-bearing capacity, characterized by multiple properties, including elastic modulus, strength, toughness, and fatigue threshold. Here we develop a process that self-assembles a nanocomposite using a hydrogel-forming polymer and a glass-forming polymer. The process separates the polymers into a hydrogel phase and a glass phase. The two phases arrest at the nanoscale and are bicontinuous. Submerged in water, the nanocomposite maintains the structure and resists further swelling. We demonstrate the process using commercial polymers, achieving high water content, as well as load-bearing capacity comparable to that of polyethylene. During the process, a rubbery stage exists, enabling us to fabricate objects of complex shapes and fine features. We conduct further experiments to discuss likely molecular origins of arrested phase separation, swell resistance, and ductility. Potential applications of the nanocomposites include artificial tissues, high-pressure filters, low-friction coatings, and solid electrolytes.


Subject(s)
Nanocomposites , Water , Weight-Bearing , Hydrogels/chemistry , Nanocomposites/chemistry , Polymers/chemistry
16.
Proc Natl Acad Sci U S A ; 119(24): e2200930119, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35671425

ABSTRACT

Biological functionality is often enabled by a fascinating variety of physical phenomena that emerge from orientational order of building blocks, a defining property of nematic liquid crystals that is also pervasive in nature. Out-of-equilibrium, "living" analogs of these technological materials are found in biological embodiments ranging from myelin sheath of neurons to extracellular matrices of bacterial biofilms and cuticles of beetles. However, physical underpinnings behind manifestations of orientational order in biological systems often remain unexplored. For example, while nematiclike birefringent domains of biofilms are found in many bacterial systems, the physics behind their formation is rarely known. Here, using cellulose-synthesizing Acetobacter xylinum bacteria, we reveal how biological activity leads to orientational ordering in fluid and gel analogs of these soft matter systems, both in water and on solid agar, with a topological defect found between the domains. Furthermore, the nutrient feeding direction plays a role like that of rubbing of confining surfaces in conventional liquid crystals, turning polydomain organization within the biofilms into a birefringent monocrystal-like order of both the extracellular matrix and the rod-like bacteria within it. We probe evolution of scalar orientational order parameters of cellulose nanofibers and bacteria associated with fluid-gel and isotropic-nematic transformations, showing how highly ordered active nematic fluids and gels evolve with time during biological-activity-driven, disorder-order transformation. With fluid and soft-gel nematics observed in a certain range of biological activity, this mesophase-exhibiting system is dubbed "biotropic," analogously to thermotropic nematics that exhibit solely orientational order within a temperature range, promising technological and fundamental-science applications.


Subject(s)
Cellulose , Gluconacetobacter xylinus , Liquid Crystals , Cellulose/biosynthesis , Cellulose/chemistry , Gels , Gluconacetobacter xylinus/metabolism , Liquid Crystals/chemistry , Water/chemistry
17.
Proc Natl Acad Sci U S A ; 119(44): e2208593119, 2022 11.
Article in English | MEDLINE | ID: mdl-36279462

ABSTRACT

Supramolecular self-assemblies of hydrophilic macromolecules functionalized with hydrophobic, structure-directing components have long been used for drug delivery. In these systems, loading of poorly soluble compounds is typically achieved through physical encapsulation during or after formation of the supramolecular assembly, resulting in low encapsulation efficiencies and limited control over release kinetics, which are predominately governed by diffusion and carrier degradation. To overcome these limitations, amphiphilic prodrugs that leverage a hydrophobic drug as both the therapeutic and structure-directing component can be used to create supramolecular materials with higher loading and controlled-release kinetics using biodegradable or enzymatically cleavable linkers. Here, we report the design, synthesis, and characterization of a library of supramolecular polymer prodrugs based on poly(ethylene glycol) (PEG) and the proregenerative drug 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (DPCA). Structure-property relationships were elucidated through experimental characterization of prodrug behavior in both the wet and dry states using scattering techniques and electron microscopy and corroborated by coarse-grained modeling. Molecular architecture and the hydrophobic-to-hydrophilic ratio of PEG-DPCA conjugates strongly influenced their physical state in water, ranging from fully soluble to supramolecular spherical assemblies and nanofibers. Molecular design and supramolecular structure, in turn, were shown to dramatically alter hydrolytic and enzymatic release and cellular transport of DPCA. In addition to potentially expanding therapeutic options for DPCA through control of supramolecular assemblies, the design principles elaborated here may inform the development of other supramolecular prodrugs based on hydrophobic small-molecule compounds.


Subject(s)
Prodrugs , Prodrugs/chemistry , Delayed-Action Preparations , Polyethylene Glycols/chemistry , Water , Carboxylic Acids
18.
Proc Natl Acad Sci U S A ; 119(42): e2204073119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215498

ABSTRACT

Sustainable circular economy requires materials that possess a property profile comparable to synthetic polymers and, additionally, processing and sourcing of raw materials that have a small environmental footprint. Here, we present a paradigm for processing marine biopolymers into materials that possess both elastic and plastic behavior within a single system involving a double-interpenetrating polymer network comprising the elastic phase of dynamic physical cross-links and stress-dissipating ionically cross-linked domains. As a proof of principle, films possessing more than twofold higher elastic modulus, ultimate tensile strength, and yield stress than those of polylactic acid were realized by blending two water-soluble marine polysaccharides, namely alginic acid (Alg) with physically cross-linkable carboxylated agarose (CA) followed by ionic cross-linking with a divalent cation. Dried CAAlg films showed homogeneous nano-micro-scale domains, with yield stress and size of the domains scaling inversely with calcium concentration. Through surface activation/cross-linking using calcium, CAAlg films could be further processed using wet bonding to yield laminated structures with interfacial failure loads (13.2 ± 0.81 N) similar to the ultimate loads of unlaminated films (10.09 ± 1.47 N). Toward the engineering of wood-marine biopolymer composites, an array of lines of CAAlg were printed on wood veneers (panels), dried, and then bonded following activation with calcium to yield fully bonded wood two-ply laminate. The system presented herein provides a blueprint for the adoption of marine algae-derived polysaccharides in the development of sustainable high-performance materials.


Subject(s)
Alginic Acid , Calcium , Biopolymers/chemistry , Cations, Divalent , Plastics , Polymers/chemistry , Polysaccharides/chemistry , Sepharose , Water/chemistry
19.
Proc Natl Acad Sci U S A ; 119(29): e2203074119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858303

ABSTRACT

Adhesives typically fall into two categories: those that have high but irreversible adhesion strength due to the formation of covalent bonds at the interface and are slow to deploy, and others that are fast to deploy and the adhesion is reversible but weak in strength due to formation of noncovalent bonds. Synergizing the advantages from both categories remains challenging but pivotal for the development of the next generation of wound dressing adhesives. Here, we report a fast and reversible adhesive consisting of dynamic boronic ester covalent bonds, formed between poly(vinyl alcohol) (PVA) and boric acid (BA) for potential use as a wound dressing adhesive. Mechanical testing shows that the adhesive film has strength in shear of 61 N/cm2 and transcutaneous adhesive strength of 511 N/cm2, generated within 2 min of application. Yet the film can be effortlessly debonded when exposed to excess water. The mechanical properties of PVA/BA adhesives are tunable by varying the cross-linking density. Within seconds of activation by water, the surface boronic ester bonds in the PVA/BA film undergo fast debonding and instant softening, leading to conformal contact with the adherends and reformation of the boronic ester bonds at the interface. Meanwhile, the bulk film remains dehydrated to offer efficient load transmission, which is important to achieve strong adhesion without delamination at the interface. Whether the substrate surface is smooth (e.g., glass) or rough (e.g., hairy mouse skin), PVA/BA adhesives demonstrate superior adhesion compared to the most widely used topical skin adhesive in clinical medicine, Dermabond.


Subject(s)
Adhesives , Bandages, Hydrocolloid , Wound Healing , Adhesives/chemistry , Animals , Esters , Hydrogels/chemistry , Mice , Polyvinyl Alcohol/chemistry , Water/chemistry
20.
Proc Natl Acad Sci U S A ; 119(42): e2212642119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36191178

ABSTRACT

Amide bond formation, the essential condensation reaction underlying peptide synthesis, is hindered in aqueous systems by the thermodynamic constraints associated with dehydration. This represents a key difficulty for the widely held view that prebiotic chemical evolution leading to the formation of the first biomolecules occurred in an oceanic environment. Recent evidence for the acceleration of chemical reactions at droplet interfaces led us to explore aqueous amino acid droplet chemistry. We report the formation of dipeptide isomer ions from free glycine or L-alanine at the air-water interface of aqueous microdroplets emanating from a single spray source (with or without applied potential) during their flight toward the inlet of a mass spectrometer. The proposed isomeric dipeptide ion is an oxazolidinone that takes fully covalent and ion-neutral complex forms. This structure is consistent with observed fragmentation patterns and its conversion to authentic dipeptide ions upon gentle collisions and for its formation from authentic dipeptides at ultra-low concentrations. It also rationalizes the results of droplet fusion experiments that show that the dipeptide isomer facilitates additional amide bond formation events, yielding authentic tri- through hexapeptides. We propose that the interface of aqueous microdroplets serves as a drying surface that shifts the equilibrium between free amino acids in favor of dehydration via stabilization of the dipeptide isomers. These findings offer a possible solution to the water paradox of biopolymer synthesis in prebiotic chemistry.


Subject(s)
Amino Acids , Oxazolidinones , Alanine , Amides , Amino Acids/chemistry , Biopolymers , Dehydration , Dipeptides/chemistry , Glycine , Humans , Peptides/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL