Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 304: 114295, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35021589

RESUMO

This study investigated the impact of seasonal variation and operating conditions on recovery of potable quality water from municipal wastewater effluent using an integrated algal treatment process with a dual forward osmosis (FO)-reverse osmosis (RO) membrane system. Pilot study of the algal process treating primary effluent validated the technical viability and seasonal performance during warm weather (May to October, 25-55 °C) using an extremophilic algal strain Galdieria sulphuraria, and during cold weather (November to April, 4-17 °C) using polyculture strains of algae and bacteria. Algal effluents from both seasons were used as the feed solution for the laboratory FO-RO study. In addition, pilot-scale FO-RO experiments were conducted to compare the system performance during treatment of algal effluent and secondary effluent from the conventional treatment facility. At 90% water recovery, the FO-RO achieved over 90% overall rejection of major ions and organic matter using the bench-scale system and over 99% rejection of all contaminants in pilot-scale studies. Detailed water quality analysis indicated that the product water from the integrated system met both the primary and secondary drinking water standards. This study demonstrated that the FO-RO system can be engineered as a viable alternative to treat algal effluent and secondary effluent for potable water reuse independent of seasonal variations and operating conditions.


Assuntos
Água Potável , Purificação da Água , Membranas Artificiais , Osmose , Projetos Piloto , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA