Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Angew Chem Int Ed Engl ; 62(29): e202304010, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37130003

RESUMO

Mucins are the key component of the defensive mucus barrier. They are extended fibers of very high molecular weight with diverse biological functions depending strongly on their specific structural parameters. Here, we present a mucin-inspired nanostructure, produced via a synthetic methodology to prepare methacrylate-based dendronized polysulfates (MIP-1) on a multi gram-scale with high molecular weight (MW=450 kDa) and thiol end-functionalized mucin-inspired polymer (MIP) via RAFT polymerization. Cryo-electron tomography (Cryo-ET) analysis of MIP-1 confirmed a mucin-mimetic wormlike single-chain fiber structure (length=144±59 nm) in aqueous solution. This biocompatible fiber showed promising activity against SARS-CoV-2 and its mutant strain, with a remarkable low half maximal (IC50 ) inhibitory concentration (IC50 =10.0 nM). Additionally, we investigate the impact of fiber length on SARS-CoV-2 inhibition by testing other functional polymers (MIPs) of varying fiber lengths.


Assuntos
COVID-19 , Impressão Molecular , Humanos , Mucinas , SARS-CoV-2 , Polímeros/farmacologia , Polímeros/química , Impressão Molecular/métodos
2.
Biomacromolecules ; 23(3): 983-991, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-34985867

RESUMO

Heparin has been known to be a broad-spectrum inhibitor of viral infection for almost 70 years, and it has been used as a medication for almost 90 years due to its anticoagulant effect. This nontoxic biocompatible polymer efficiently binds to many types of viruses and prevents their attachment to cell membranes. However, the anticoagulant properties are limiting their use as an antiviral drug. Many heparin-like compounds have been developed throughout the years; however, the reversible nature of the virus inhibition mechanism has prevented their translation to the clinics. In vivo, such a mechanism requires the unrealistic maintenance of the concentration above the binding constant. Recently, we have shown that the addition of long hydrophobic linkers to heparin-like compounds renders the interaction irreversible while maintaining the low-toxicity and broad-spectrum activity. To date, such hydrophobic linkers have been used to create heparin-like gold nanoparticles and ß-cyclodextrins. The former achieves a nanomolar inhibition concentration on a non-biodegradable scaffold. The latter, on a fully biodegradable scaffold, shows only a micromolar inhibition concentration. Here, we report that the addition of hydrophobic linkers to a new type of multifunctional scaffold (dendritic polyglycerol, dPG) creates biocompatible compounds endowed with nanomolar activity. Furthermore, we present an in-depth analysis of the molecular design rules needed to achieve irreversible virus inhibition. The most active compound (dPG-5) showed nanomolar activity against herpes simplex virus 2 (HSV-2) and respiratory syncytial virus (RSV), giving a proof-of-principle for broad-spectrum while keeping low-toxicity. In addition, we demonstrate that the virucidal activity leads to the release of viral DNA upon the interaction between the virus and our polyanionic dendritic polymers. We believe that this paper will be a stepping stone toward the design of a new class of irreversible nontoxic broad-spectrum antivirals.


Assuntos
Nanopartículas Metálicas , Vírus , Anticoagulantes/farmacologia , Antivirais/química , Antivirais/farmacologia , Glicerol , Ouro , Heparina/farmacologia , Polímeros/farmacologia
3.
Biomacromolecules ; 22(4): 1545-1554, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33706509

RESUMO

Inhibition of herpes simplex virus type 1 (HSV-1) binding to the host cell surface by highly sulfated architectures is among the promising strategies to prevent virus entry and infection. However, the structural flexibility of multivalent inhibitors plays a major role in effective blockage and inhibition of virus receptors. In this study, we demonstrate the inhibitory effect of a polymer scaffold on the HSV-1 infection by using highly sulfated polyglycerols with different architectures (linear, dendronized, and hyperbranched). IC50 values for all synthesized sulfated polyglycerols and the natural sulfated polymer heparin were determined using plaque reduction infection assays. Interestingly, an increase in the IC50 value from 0.03 to 374 nM from highly flexible linear polyglycerol sulfate (LPGS) to less flexible scaffolds, namely, dendronized polyglycerol sulfate and hyperbranched polyglycerol sulfate was observed. The most potent LPGS inhibits HSV-1 infection 295 times more efficiently than heparin, and we show that LPGS has a much reduced anticoagulant capacity when compared to heparin as evidenced by measuring the activated partial thromboplastin time. Furthermore, prevention of infection by LPGS and the commercially available drug acyclovir were compared. All tested sulfated polymers do not show any cytotoxicity at concentrations of up to 1 mg/mL in different cell lines. We conclude from our results that more flexible polyglycerol sulfates are superior to less flexible sulfated polymers with respect to inhibition of HSV-1 infection and may constitute an alternative to the current antiviral treatments of this ubiquitous pathogen.


Assuntos
Herpesvirus Humano 1 , Antivirais/farmacologia , Glicerol , Polímeros , Sulfatos
4.
Biomacromolecules ; 21(8): 3353-3363, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32589015

RESUMO

This article reports the synthesis, spontaneous self-assembly, highly efficient drug encapsulation, and glutathione (GSH)-triggered intracellular sustained drug delivery of an ABA-type amphiphilic triblock copolymer, namely, polyglycerol-b-poly(disulfide)-b-polyglycerol (PG-b-PDS-b-PG). The bioreducible PDS block with reactive pyridyldisulfide groups present at the chain terminals was attached to thiol-terminated heterotelechelic PG by a thiol-disulfide exchange reaction producing the amphiphilic PG-b-PDS-b-PG. It formed a stable polymersome in aqueous medium with a critical aggregation concentration of 0.02 mg/mL and average hydrodynamic diameter (Dh) of 230 nm and showed highly efficient and stable encapsulation of doxorubicin (Dox) with a remarkably high drug loading efficiency (DLE) and drug loading content (DLC) of 54% and 16%, respectively. Fluorescence spectroscopy studies revealed GSH-triggered drug release and strong dependence of the release kinetics on the GSH concentration due to degradation of the amphiphilic block copolymer and disassembly of the polymersome. MTT assay indicated excellent biocompatibility of the block copolymer as >90% cells (HeLa or MDA-MB-231) were found to be alive after 96 h of incubation with a polymer concentration of up to 1.0 mg/mL, which was further validated by the hemolysis assay. Cytotoxicity assay of the Dox-loaded polymersome exhibited time and dose-dependent sustained killing of HeLa as well as MDA-MB-231 cells wherein after 48 h of incubation >50% cell killing was noticed with a Dox concentration of ∼4.0 and ∼8.7 µg/mL, respectively, while the free Dox showed faster cell killing. Flow cytometry and live cell fluorescence microscopy studies revealed time-dependent cellular uptake of the drug-loaded polymersome followed by diffusion of the drug to the nucleus. Cells with artificially enhanced GSH were killed at a much faster rate indicating that intracellular GSH-triggered disassembly is the key drug release mechanism.


Assuntos
Portadores de Fármacos , Glutationa , Sobrevivência Celular , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Glicerol , Humanos , Micelas , Polietilenoglicóis , Polímeros
5.
Biomacromolecules ; 20(3): 1157-1166, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30642176

RESUMO

Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a cell surface scavenger receptor. The protein is involved in binding and internalization of oxidized low-density lipoprotein (oxLDL), which leads under pathophysiological circumstances to plaque formation in arteries and initiation of atherosclerosis. A structural feature of LOX-1 relevant to oxLDL binding is the "basic spine" motif consisting of linearly aligned arginine residues stretched over the dimer surface. Inhibition of LOX-1 can be done by blocking these positively charged motifs. Here we report on the design, synthesis, and evaluation of a series of novel LOX-1 inhibitors having different numbers of sulfates and polyethylene glycerol (PEG) spacer. Two molecules, compounds 6b and 6d, showed binding affinity in the low nM range, i.e. 45.8 and 47.4 nM, respectively. The in vitro biological studies reveal that these molecules were also able to block the interaction of LOX-1 with its cognate ligands oxLDL, aged RBC, and bacteria.


Assuntos
Desenho de Fármacos , Glicerol/química , Polietilenoglicóis/química , Receptores Depuradores Classe E/antagonistas & inibidores , Sulfatos/química , Sítios de Ligação , Células HEK293 , Humanos , Ligantes
6.
Biomacromolecules ; 20(5): 1867-1875, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30995401

RESUMO

Polyglycerol nanogels are three-dimensional polymeric networks with a few hundred nanometer sizes and the ability to encapsulate and deliver cargos for a wide range of biomedical applications. However, time-consuming and multistep synthetic routes as well as milligram-scale production have hindered further development of these nanomaterials. In this work, we report on a straightforward synthetic method for the production of polyglycerol nanoarchitectures. Enzymatic ring-opening copolymerization of a mixture of glycidol and succinic anhydride resulted in polyglycerol nanogels with succinic acid segments in their backbone. Novozyme 435 was used as a dual catalytic agent to support ring-opening polymerization of the above-mentioned cyclic monomers as well as esterification of the produced oligomers to obtain nanogels. While succinic acid segments improved the biodegradability and loading capacity of nanogels, polyglycerol caused water solubility, high functionality, and biocompatibility. Nanogels were loaded with tacrolimus and photosensitizer 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (mTHPP)-a close congener of the approved photosensitizer temoporfin (mTHPC)-and their ability to improve the skin penetration of these therapeutic agents was investigated. mTHPP delivery experiments on human skin, which were quantified by fluorescence microscopy, showed that these nanogels deposit in the stratum corneum and release the loaded drug to viable epidermis of skin efficiently in comparison with commercially available base cream. Taking advantage of the straightforward synthesis as well as biodegradability, biocompatibility, high loading capacity, and efficient skin penetration, the synthesized nanogels could be used as future topical delivery systems.


Assuntos
Portadores de Fármacos , Glicerol/síntese química , Nanogéis/química , Polímeros/síntese química , Absorção Cutânea , Succinatos/síntese química , Administração Cutânea , Sistemas de Liberação de Medicamentos
7.
Biomacromolecules ; 19(1): 222-238, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29232113

RESUMO

An adaptable approach toward cleavable nanoparticle carrier systems for photodynamic therapy (PDT) is presented, comprising a biocompatible carrier loaded with multiple photosensitizer (PS) molecules related to the clinically employed PS Temoporfin, two linkers cleavable under different triggers and glyco-targeting with mannose. A synthetic pathway to stimuli responsive hyperbranched polyglycerol (hPG) porphyrin conjugates via the copper(I)-catalyzed 1,3-dipolar cycloaddition (CuAAC) or the strain-promoted alkyne-azide cycloaddition (SPAAC) has been developed. The PS 10,15,20-tris(3-hydroxyphenyl)-5-(2,3,4,5,6-pentafluorophenyl)porphyrin was functionalized with disulfide containing cystamine and acid-labile benzacetal linkers. Conjugates with reductively and pH labile linkers were thus obtained. Cleavage of the active PS agents from the polymer carrier is shown in several different release studies. The uptake of the conjugates into the cells is demonstrated via confocal laser scanning microscopy (CLSM) and flow cytometry. Finally, the antitumor and antibacterial phototoxicity of selected conjugates has been assessed in four different tumor cell lines and in cultures of the bacterium Staphylococcus aureus. The conjugates exhibited phototoxicity in several tumor cell lines in which conjugates with reductively cleavable linkers were more efficient compared to conjugates with acid-cleavable linkers. For S. aureus, strong phototoxicity was observed for a combination of the reductively cleavable and the pH labile linker and likewise for the cleavable conjugate with mannose targeting groups. The results thus suggest that the conjugates have potential for antitumor as well as antibacterial PDT.


Assuntos
Glicerol/administração & dosagem , Metaloporfirinas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Polímeros/administração & dosagem , Ácidos/química , Antibacterianos/farmacologia , Linhagem Celular Tumoral , Cromatografia em Camada Fina , Cobre/química , Reação de Cicloadição , Citometria de Fluxo , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal , Oxirredução , Espectrofotometria Ultravioleta , Staphylococcus aureus/efeitos dos fármacos
8.
Biomacromolecules ; 18(1): 210-216, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28005352

RESUMO

Prevention of microbial contamination of surfaces is one of the biggest challenges for biomedical applications. Establishing a stable, easily produced, highly antibacterial surface coating offers an efficient solution but remains a technical difficulty. Here, we report on a new approach to create an in situ hydrogel film-coating on glass surfaces made by enzymatic cross-linking under physiological conditions. The cross-linking is catalyzed by horseradish peroxidase (HRP)/glucose oxidase (GOD)-coupled cascade reactions in the presence of glucose and results in 3D dendritic polyglycerol (dPG) scaffolds bound to the surface of glass. These scaffolds continuously release H2O2 as long as glucose is present in the system. The resultant polymeric coating is highly stable, bacterial-repellent, and functions under physiological conditions. Challenged with high loads of bacteria (OD540 = 1.0), this novel hydrogel and glucose-amended coating reduced the cell viability of Pseudomonas putida (Gram-negative) by 100% and Staphylococcus aureus (Gram-positive) by ≥40%, respectively. Moreover, glucose-stimulated production of H2O2 by the coating system was sufficient to kill both test bacteria (at low titers) with >99.99% efficiency within 24 h. In the presence of glucose, this platform produces a coating with high effectiveness against bacterial adhesion and survival that can be envisioned for the applications in the glucose-associated medical/oral devices.


Assuntos
Antibacterianos/farmacologia , Vidro/química , Glucose Oxidase/metabolismo , Glicerol/química , Peroxidase do Rábano Silvestre/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Polímeros/química , Antibacterianos/química , Aderência Bacteriana , Materiais Revestidos Biocompatíveis/química , Glucose/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução , Pseudomonas putida/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
9.
Langmuir ; 32(47): 12453-12460, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27467698

RESUMO

There is a great challenge in constructing pH-responsive drug delivery systems in biomedical application research. Many nanocomposites are intended to be pH-responsive as drug carriers because of a tumorous or intracellular mildly acidic environment. However, it is always difficult to find an appropriate system for quick response and release before the carrier is excreted from the living system. In this work, hyperbranched polymer, hyperbranched polyglycerol (hPG), and conjugated mesoporous silica nanoparticles (MSNs) were assembled as complexes to serve as drug carriers. Herein, the conjugated polymer-MSNs interacted through the Schiff base bond, which possessed a mildly acidic responsive property. Interestingly, the assembled system could rapidly respond and release guest molecules inside cancer cells. This would make the entrapped drug released before the carriers escape from the endosome counterpart. The results show that the assembled composite complexes can be considered to be a drug delivery system for cancer therapy.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Células A549 , Reagentes de Ligações Cruzadas , Endocitose , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/farmacocinética , Glicerol/química , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Nanotecnologia , Neoplasias/tratamento farmacológico , Polímeros/química , Rodaminas/administração & dosagem , Rodaminas/farmacocinética , Bases de Schiff/química , Dióxido de Silício/química , Microambiente Tumoral
10.
Macromol Rapid Commun ; 36(2): 254-61, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25400250

RESUMO

To gain insight into the factors that affect stability and transport efficiency under dilution conditions, dendronized and hyperbranched multifunctional amphiphilic polymers are synthesized by following the "grafting to" approach using varied amounts of propargylated alkyl chain with perfect and hyperbranched polyglycerol dendrons on the base copolymer of PEG (Mn: 1000 g mol(-1)) diethylester and 2-azidopropane-1,3-diol following the "bio-catalytic method" and "click approach". The dendronized and hyperbranched polymeric systems form supramolecular aggregates and exhibit an efficient transport potential for the model dye "Nile red" in the low µm range in the core-shell-type architecture provided with distinct amphiphilicity as required for encapsulation. Cytotoxicity studies show the polymeric systems to be non-toxic over a wide concentration range. The cellular internalization of Nile-red-encapsulated supramolecular micellar structures is also studied using cellular fluorescence micro-scopy and fluorescence-activated cell sorting (FACS) measurements. A comparison of the data for the dendronized polymers (PEG Mn: 600/1000 g mol(-1)) with the respective low-molecular-weight amphiphile reveal that these polymeric systems are excellent nanotransporters.


Assuntos
Dendrímeros/química , Portadores de Fármacos/química , Nanopartículas/química , Polímeros/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Microscopia Crioeletrônica , Dendrímeros/síntese química , Dendrímeros/farmacologia , Relação Dose-Resposta a Droga , Corantes Fluorescentes/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Modelos Químicos , Estrutura Molecular , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Nanopartículas/ultraestrutura , Oxazinas/química , Polímeros/síntese química , Polímeros/farmacologia
11.
Biomacromolecules ; 15(11): 3881-90, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25144348

RESUMO

Although several strategies are now available to enzymatically cross-link linear polymers to hydrogels for biomedical use, little progress has been reported on the use of dendritic polymers for the same purpose. Herein, we demonstrate that horseradish peroxidase (HRP) successfully catalyzes the oxidative cross-linking of a hyperbranched polyglycerol (hPG) functionalized with phenol groups to hydrogels. The tunable cross-linking results in adjustable hydrogel properties. Because the obtained materials are cytocompatible, they have great potential for encapsulating living cells for regenerative therapy. The gel formation can be triggered by glucose and controlled well under various environmental conditions.


Assuntos
Reagentes de Ligações Cruzadas/química , Glicerol/química , Hidrogéis/química , Polímeros/química , Alicerces Teciduais/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Reagentes de Ligações Cruzadas/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Glicerol/farmacologia , Hidrogéis/farmacologia , Camundongos , Polímeros/farmacologia
12.
Angew Chem Int Ed Engl ; 53(43): 11650-5, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25200129

RESUMO

A rapid and universal approach for multifunctional material coatings was developed based on a mussel-inspired dendritic polymer. This new kind of polymer mimics not only the functional groups of mussel foot proteins (mfps) but also their molecular weight and molecular structure. The large number of catechol and amine groups set the basis for heteromultivalent anchoring and crosslinking. The molecular weight reaches 10 kDa, which is similar to the most adhesive mussel foot protein mfp-5. Also, the dendritic structure exposes its functional groups on the surface like the folded proteins. As a result, a very stable coating can be prepared on virtually any type of material surface within 10 min by a simple dip-coating method, which is as fast as the formation of mussel byssal threads in nature.


Assuntos
Bivalves/química , Polímeros/química , Proteínas/química , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura
13.
Carbohydr Polym ; 316: 120925, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321754

RESUMO

Boronated polymers are in the focus of dynamic functional materials due to the versatility of the B-O interactions and accessibility of precursors. Polysaccharides are highly biocompatible, and therefore, an attractive platform for anchoring boronic acid groups for further bioconjugation of cis-diol containing molecules. We report for the first time the introduction of benzoxaborole by amidation of the amino groups of chitosan improving solubility and introducing cis-diol recognition at physiological pH. The chemical structures and physical properties of the novel chitosan-benzoxaborole (CS-Bx) as well as two phenylboronic derivatives synthesized for comparison, were characterized by nuclear magnetic resonance (NMR), infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), rheology and optical spectroscopic methods. The novel benzoxaborole grafted chitosan was perfectly solubilized in an aqueous buffer at physiological pH, extending the possibilities of boronated materials derived from polysaccharides. The dynamic covalent interaction between boronated chitosan and model affinity ligands, was studied by means of spectroscopy methods. A glycopolymer derived from poly(isobutylene-alt-anhydride) was also synthesized to study the formation of dynamic assemblies with benzoxaborole-grafted chitosan. A first approximation to apply fluorescence microscale thermophoresis for the interactions of the modified polysaccharide is also discussed. Additionally, the activity of CSBx against bacterial adhesion was studied.


Assuntos
Quitosana , Quitosana/química , Peso Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Polímeros/química , Antibacterianos/química
14.
Int J Pharm ; 642: 123158, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37336299

RESUMO

Induced angiogenesis, a specific hallmark of cancer, plays a vital role in tumor progression and can be targeted by inhibitors like sunitinib. Sunitinib is a small hydrophobic molecule suffering from low bioavailability and a short half-life in the bloodstream. To overcome these drawbacks, suitable drug delivery systems need to be developed. In this work dendritic polyglycerol (dPG), a well-known polymer, was functionalized with a sheddable shell. Therefore, aliphatic chains of different lengths (C5, C9, C11) were coupled to dPG through a cleavable ester bond. To restore water solubility and improve tumor targeting, the surface was decorated with sulfate groups. The resulting shell-sheddable dPG sulfates were characterized and evaluated regarding their loading capacity and biocompatibility in cell culture. The nine-carbon chain derivative (dPG-TNS) was selected as the best candidate for further experiments due to its high drug loading capacity (20 wt%), and a sustained release in vitro. The cellular biocompatibility of the blank carrier up to 1 mg/mL was confirmed after 24 h incubation on HeLa cells. Furthermore, the shell-cleavability of dPG-TNS under different physiological conditions was shown in a degradation study over four weeks. The activity of sunitinib-loaded dPG-TNS was demonstrated in a tube formation assay on Human umbilical vein endothelial cells (HUVECs). Our results suggest that the drug-loaded nanocarrier is a promising candidate to be further investigated in tumor treatments, as it shows similar efficacy to free sunitinib while overcoming its limitations.


Assuntos
Células Endoteliais , Sulfatos , Humanos , Sunitinibe , Células HeLa , Polímeros/química , Linhagem Celular Tumoral
15.
J Mater Chem B ; 11(17): 3797-3807, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37006120

RESUMO

Insufficient stability of micellar drug delivery systems is still the major limitation to their systematic application in chemotherapy. This work demonstrates novel π-electron stabilized polyelectrolyte block copolymer micelles based on dendritic polyglycerolsulfate-cystamine-block-poly(4-benzoyl-1,4-oxazepan-7-one)-pyrene (dPGS-SS-POxPPh-Py) presenting a very low critical micelle concentration (CMC) of 0.3 mg L-1 (18 nM), 55-fold lower than that of conventional amphiphilic block copolymer micelles. The drug loading capacities of up to 13 wt% allow the efficient encapsulation of the chemotherapeutic Docetaxel (DTX). The spherical morphology of the micelles was proven by cryogenic electron microscopy (cryo-EM). Gaussian Analysis revealed well-defined sizes of 57 nm and 80 nm in the unloaded/loaded state, respectively. Experiments by dynamic light scattering (DLS), ultraviolet-visible spectroscopy (UV-VIS), fluorescence spectroscopy, and cross-polarization solid-state 13C NMR studied the π-π interactions between the core-forming block segment of dPGS-SS-POxPPh-Py and DTX. The findings point to a substantial contribution of these noncovalent interactions to the system's high stability. By confocal laser scanning microscopy (CLSM), the cellular uptake of fluorescein-labelled FITC-dPGS-SS-POxPPh-Py micelles was monitored after one day displaying the successful cell insertion of the cargo-loaded systems. To ensure the drug release in cancerous cells, the disassembly of the micellar DTX-formulations was achieved by reductive and enzymatic degradation studied by light scattering and GPC experiments. Further, no size increase nor disassembly in the presence of human serum proteins after four days was detected. The precise in vitro drug release was also given by the high potency of inhibiting cancer cell growth, finding half-maximal inhibitory concentrations (IC50) efficiently reduced to 68 nM coming along with high viabilities of the empty polymer materials tested on tumor-derived HeLa, A549, and McF-7 cell lines after two days. This study highlights the substantial potential of micelles tailored through the combination of π-electron stabilization with dendritic polyglycerolsulfate for targeted drug delivery systems, enabling them to have a significant foothold in the clinical treatment of cancer.


Assuntos
Amidas , Micelas , Humanos , Docetaxel , Ésteres , Taxoides/química , Taxoides/farmacologia , Polímeros/química
16.
ChemMedChem ; 16(9): 1457-1466, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33559331

RESUMO

A new series of nonionic gemini amphiphiles have been synthesized in a multi-step chemoenzymatic approach by using a novel A2 B2 -type central core consisting of conjugating glycerol and propargyl bromide on 5-hydroxy isophthalic acid. A pair of hydrophilic monomethoxy poly(ethylene glycol) (mPEG) and hydrophobic linear alkyl chains (C12 /C15 ) were then added to the core to obtain amphiphilic architectures. The aggregation tendency in aqueous media was studied by dynamic light scattering, fluorescence spectroscopy and cryogenic transmission electron microscopy. The nanotransport potential of the amphiphiles was studied for model hydrophobic guests, that is, the dye Nile Red and the drug Nimodipine by using UV/Vis and fluorescence spectroscopy. Evaluation of the viability of amphiphile-treated A549 cells showed them to be well tolerated up to the concentrations studied. Being ester based, these amphiphiles exhibit stimuli-responsive sensitivity towards esterases, and a rupture of amphiphilic architecture was observed in the presence of immobilized Candida antarctica lipase (Novozym 435), thus facilitating release of the encapsulated guest from the aggregate.


Assuntos
Portadores de Fármacos/química , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/farmacologia , Proteínas Fúngicas/metabolismo , Humanos , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Lipase/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Nimodipina/química , Nimodipina/metabolismo , Oxazinas/química , Polietilenoglicóis/química
17.
ACS Biomater Sci Eng ; 7(6): 2569-2579, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34061498

RESUMO

Targeted delivery and extended blood circulation of anticancer drugs have been the challenges for decreasing the adverse side effects and improving the therapeutic efficiency in cancer chemotherapy. Herein, we present a drug delivery system (DDS) based on biodegradable dendritic polyglycerol sulfate-bearing poly(caprolactone) (dPGS-PCL) chains, which has been synthesized on 20 g scale using a straightforward two-step protocol. In vivo fluorescence imaging demonstrated a significant accumulation of the DDS in the tumor environment. Sunitinib, an anticancer drug, was loaded into the DDS and the drug-induced toxicity was investigated in vitro and in vivo. The drug encapsulated in dPGS-PCL and the free drug showed similar toxicities in A431 and HT-29 cells, and the cellular uptake was comparable. The straightforward and large-scale synthesis, the organic solvent-free drug-loading approach, together with the tumor targetability of the biodegradable dendritic polyglycerols, render this copolymer a promising candidate for targeted cancer nanomedicine drug delivery systems.


Assuntos
Antineoplásicos , Citostáticos , Neoplasias , Glicerol , Humanos , Neoplasias/tratamento farmacológico , Polímeros , Sulfatos
18.
Int J Pharm ; 580: 119212, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32165226

RESUMO

A new class of non-ionic amphiphiles have been synthesised using a combination of polyethylene glycol (PEG) and oligoglycerol dendrons as hydrophilic units and an alkoxy aryl moiety as hydrophobic unit. The resulting amphiphiles were found to aggregate in aqueous medium. Their aggregation behaviour was studied using dynamic light scattering (DLS), fluorescence spectroscopy, and cryogenic electron microscopy (cryo-TEM). The inner hydrophobic core of these aggregates in aqueous medium is capable of encapsulating lipophilic guest molecules. The encapsulation behaviour was studied using Nile red as a hydrophobic dye as well as Curcumin and Dexamethasone as hydrophobic drug candidates. Furthermore, for biological evaluation, cytotoxicity and cellular uptake was studied using different cancer cell lines. The biomedical application of synthesised amphiphiles was further investigated for dermal drug delivery on excised human skin using Nile red encapsulated in the nanocarrier. The release profile of drug/dye encapsulated amphiphiles was studied under physiochemical conditions in the presence of immobilized lipase Novozym 435.


Assuntos
Antracenos/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Polietilenoglicóis/química , Absorção Cutânea/fisiologia , Células A549 , Antracenos/administração & dosagem , Antracenos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/metabolismo , Células HeLa , Humanos , Células MCF-7 , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Técnicas de Cultura de Órgãos , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/metabolismo , Absorção Cutânea/efeitos dos fármacos
19.
ACS Nano ; 14(2): 2248-2264, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31951375

RESUMO

Here, we use cryo soft X-ray tomography (cryo-SXT), which delivers 3D ultrastructural volumes of intact cells without chemical fixation or staining, to gain insight about nanoparticle uptake for nanomedicine. We initially used dendritic polyglycerol sulfate (dPGS) with potential diagnostic and therapeutic applications in inflammation. Although dPGS-coated gold nanoparticle (dPGS-AuNP) uptake followed a conventional endocytic/degradative pathway in human lung epithelial cell lines (A549), with cryo-SXT, we detected ∼5% of dPGS-AuNPs in the cytoplasm, a level undetectable by confocal light microscopy. We also observed ∼5% of dPGS-AuNPs in a rarely identified subcellular site, namely, lipid droplets, which are important for cellular energy metabolism. Finally, we also found substantial changes in the quantity of cytoplasmic organelles upon dPGS-AuNP uptake over the 1-6 h incubation period; the number of small vesicles and mitochondria significantly increased, and the number of multivesicular bodies and the number and volume of lipid droplets significantly decreased. Although nearly all organelle numbers at 6 h were still significantly different from controls, most appeared to be returning to normal levels. To test for generality, we also examined cells after uptake of gold nanoparticles coated with a different agent, polyethylenimine (PEI), used for nucleic acid delivery. PEI nanoparticles did not enter lipid droplets, but they induced similar, albeit less pronounced, changes in the quantity of cytoplasmic organelles. We confirmed these changes in organelle quantities for both nanoparticle coatings by confocal fluorescence microscopy. We suggest this cytoplasmic remodeling could reflect a more common cellular response to coated gold nanoparticle uptake.


Assuntos
Citoplasma/metabolismo , Glicerol/metabolismo , Ouro/metabolismo , Nanopartículas Metálicas/química , Organelas/metabolismo , Polímeros/metabolismo , Sulfatos/metabolismo , Citoplasma/química , Glicerol/química , Ouro/química , Humanos , Organelas/química , Tamanho da Partícula , Polímeros/química , Sulfatos/química , Propriedades de Superfície , Tomografia por Raios X , Células Tumorais Cultivadas
20.
Mater Sci Eng C Mater Biol Appl ; 116: 111109, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32806230

RESUMO

Implant-associated infections present severe and difficult-to-treat complications after surgery, related to implant biofilm colonization. Systemic administration of antibiotics cannot reach sufficient concentrations at the infected site and may be toxic. Here we describe how mussel-inspired dendritic material coated on a titanium surface can locally activate a prodrug of daptomycin (pro-dapto) to treat methicillin-resistant Staphylococcus aureus. The mechanism of the prodrug activation is based on bio-orthogonal click chemistry between a tetrazine (Tz) and trans-cyclooctene (TCO). The former is attached to the dendritic polymer, while the later converts daptomycin into a prodrug. Characterization of the material's properties revealed that it is hydrophobic, non-toxic, and stable for a prolonged period of time. We envision that the titanium coated dendritic material will be able to improve the treatment of implant-associated infections by concentrating systemically administered antibiotic prodrugs, thus converting them into active localized medicines.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Polímeros , Infecções Estafilocócicas/tratamento farmacológico , Titânio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA