Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Molecules ; 25(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365966

RESUMO

Biodegradable pectin polymers have been recommended for a variety of biomedical applications, ranging from the delivery of oral drugs to the repair of injured visceral organs. A promising approach to regulate pectin biostability is the blending of pectin films. To investigate the development of conjoined films, we examined the physical properties of high-methoxyl pectin polymer-polymer (homopolymer) interactions at the adhesive interface. Pectin polymers were tested in glass phase (10-13% w/w water content) and gel phase (38-41% w/w water content). The tensile strength of polymer-polymer adhesion was measured after variable development time and compressive force. Regardless of pretest parameters, the adhesive strength of two glass phase films was negligible. In contrast, adhesion testing of two gel phase films resulted in significant tensile adhesion strength (p < 0.01). Adhesion was also observed between glass phase and gel phase films-likely reflecting the diffusion of water from the gel phase to the glass phase films. In studies of the interaction between two gel phase films, the polymer-polymer adhesive strength increased linearly with increasing compressive force (range 10-80 N) (R2 = 0.956). In contrast, adhesive strength increased logarithmically with time (range 10-10,000 s) (R2 = 0.913); most of the adhesive strength was observed within minutes of contact. Fracture mechanics demonstrated that the adhesion of two gel phase films resulted in a conjoined film with distinctive physical properties including increased extensibility, decreased stiffness and a 30% increase in the work of cohesion relative to native polymers (p < 0.01). Scanning electron microscopy of the conjoined films demonstrated cross-grain adhesion at the interface between the adhesive homopolymers. These structural and functional data suggest that blended pectin films have emergent physical properties resulting from the cross-grain intermingling of interfacial pectin chains.


Assuntos
Biopolímeros/química , Membranas Artificiais , Pectinas/química , Água/química , Difusão , Géis , Vidro , Polissacarídeos/química
2.
Molecules ; 25(10)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438652

RESUMO

There is a strong interest in cement additives that are able to prevent or mitigate the adverse effects of cracks in concrete that cause corrosion of the reinforcement. Inorganic polyphosphate (polyP), a natural polymer that is synthesized by bacteria, even those on cement/concrete, can increase the resistance of concrete to progressive damage from micro-cracking. Here we use a novel bioinspired strategy based on polyP-stabilized amorphous calcium carbonate (ACC) to give this material self-healing properties. Portland cement was supplemented with ACC nanoparticles which were stabilized with 10% (w/w) Na-polyP. Embedding these particles in the hydrated cement resulted in the formation of calcite crystals after a hardening time of 10 days, which were not seen in controls, indicating that the particles dissolve and then transform into calcite. While there was no significant repair in the controls without ACC, almost complete closure of the cracks was observed after a 10 days healing period in the ACC-supplemented samples. Nanoindentation measurements on the self-healed crack surfaces showed a similar or slightly higher elasticity at a lower hardness compared to non-cracked surfaces. Our results demonstrate that bioinspired approaches, like the use of polyP-stabilized ACC shown here, can significantly improve the repair capacity of Portland cement.


Assuntos
Carbonato de Cálcio/química , Cimentos de Ionômeros de Vidro/química , Nanopartículas/química , Polifosfatos/química , Carbonato de Cálcio/farmacologia , Materiais de Construção , Polifosfatos/farmacologia
3.
Int J Mol Sci ; 19(2)2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29385104

RESUMO

Using femur explants from mice as an in vitro model, we investigated the effect of the physiological polymer, inorganic polyphosphate (polyP), on differentiation of the cells of the bone marrow in their natural microenvironment into the osteogenic and chondrogenic lineages. In the form of amorphous Ca-polyP nano/microparticles, polyP retains its function to act as both an intra- and extracellular metabolic fuel and a stimulus eliciting morphogenetic signals. The method for synthesis of the nano/microparticles with the polyanionic polyP also allowed the fabrication of hybrid particles with the bisphosphonate zoledronic acid, a drug used in therapy of bone metastases in cancer patients. The results revealed that the amorphous Ca-polyP particles promote the growth/viability of mesenchymal stem cells, as well as the osteogenic and chondrogenic differentiation of the bone marrow cells in rat femur explants, as revealed by an upregulation of the expression of the transcription factors SOX9 (differentiation towards osteoblasts) and RUNX2 (chondrocyte differentiation). In parallel to this bone anabolic effect, incubation of the femur explants with these particles significantly reduced the expression of the gene encoding the osteoclast bone-catabolic enzyme, cathepsin-K, while the expression of the tartrate-resistant acid phosphatase remained unaffected. The gene expression data were supported by the finding of an increased mineralization of the cells in the femur explants in response to the Ca-polyP particles. Finally, we show that the hybrid particles of polyP complexed with zoledronic acid exhibit both the cytotoxic effect of the bisphosphonate and the morphogenetic and mineralization inducing activity of polyP. Our results suggest that the Ca-polyP nano/microparticles are not only a promising scaffold material for repairing long bone osteo-articular damages but can also be applied, as a hybrid with zoledronic acid, as a drug delivery system for treatment of bone metastases. The polyP particles are highlighted as genuine, smart, bioinspired nano/micro biomaterials.


Assuntos
Regeneração Óssea , Difosfonatos/farmacologia , Fêmur/fisiologia , Imidazóis/farmacologia , Células-Tronco Mesenquimais/fisiologia , Nanopartículas/química , Polifosfatos , Animais , Materiais Biocompatíveis , Condrogênese , Subunidade alfa 1 de Fator de Ligação ao Core/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Fêmur/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteogênese , Ratos , Fatores de Transcrição SOX9/efeitos dos fármacos , Fatores de Transcrição SOX9/genética , Alicerces Teciduais , Regulação para Cima , Ácido Zoledrônico
4.
Mar Drugs ; 15(5)2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28513544

RESUMO

We describe a novel regeneratively-active barrier membrane which consists of a durable electrospun poly(ε-caprolactone) (PCL) net covered with a morphogenetically-active biohybrid material composed of collagen and inorganic polyphosphate (polyP). The patch-like fibrous collagen structures are decorated with small amorphous polyP nanoparticles (50 nm) formed by precipitation of this energy-rich and enzyme-degradable (alkaline phosphatase) polymer in the presence of calcium ions. The fabricated PCL-polyP/collagen hybrid mats are characterized by advantageous biomechanical properties, such as enhanced flexibility and stretchability with almost unaltered tensile strength of the PCL net. The polyP/collagen material promotes the attachment and increases the viability/metabolic activity of human mesenchymal stem cells compared to cells grown on non-coated mats. The gene expression studies revealed that cells, growing onto polyP/collagen coated mats show a significantly (two-fold) higher upregulation of the steady-state-expression of the angiopoietin-2 gene used as an early marker for wound healing than cells cultivated onto non-coated mats. Based on our results we propose that amorphous polyP, stabilized onto a collagen matrix, might be a promising component of functionally-active barrier membranes for guided tissue regeneration in medicine and dentistry.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Membranas Artificiais , Polifosfatos/farmacologia , Células 3T3 , Angiopoietina-2/genética , Angiopoietina-2/metabolismo , Animais , Calcificação Fisiológica , Colágeno , Regulação da Expressão Gênica/fisiologia , Humanos , Proteínas de Membrana , Células-Tronco Mesenquimais , Camundongos , Nanopartículas/química , Osteogênese , Poliésteres , Polímeros/química , Polifosfatos/química , Propriedades de Superfície , Engenharia Tecidual/métodos
5.
Clin Oral Investig ; 20(6): 1303-15, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26434650

RESUMO

OBJECTIVES: This study evaluated the influence of different rehydration media and time periods on biomechanical and structural properties of different acellular collagen matrices (ACMs). MATERIALS AND METHODS: Specimens of three ACMs (mucoderm®, Mucograft®, Dynamatrix®) were rehydrated in saline solution (SS) or human blood for different time periods (5-60 min). ACMs under dry condition served as controls. Biomechanical properties of the ACMs after different rehydration periods were determined by means of tensile testing. ACMs' properties were further characterized using Fourier-transform-infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). RESULTS: At dry conditions, mucoderm® presented the highest tensile strength (TS) and Dynamatrix® showed the maximum elastic modulus (EM; p each ≤0.036). Rehydration in SS and blood resulted in significant TS changes of mucoderm® (p each ≤0.05). Concering EM, mucograft® showed significantly decreased values after rehydration in SS compared to Dynamatrix® and mucoderm® after 10 min (p each ≤0.024). mucoderm® hydrated for 5 min in blood displayed nearly double TS and a significantly increased EM after 60 min (p = 0.043) compared to rehydration in SS. TS and EM values of Dynamatrix® and Mucograft® were not altered following rehydration in blood versus SS (p each ≥0.053). FTIR analysis confirmed the recovery of the graft protein backbone with increased rehydration in all samples. DSC measurements revealed that tissue hydration decreased thermal stability of the investigated ACMs. CONCLUSION: Our findings demonstrated that the rehydration protocol affects the biomechanical properties of ACMs. CLINICAL RELEVANCE: Clinicians should be aware of altered handling and mechanical properties of ACMs following different rehydration protocols.


Assuntos
Derme Acelular , Colágeno/química , Hidratação/métodos , Membranas Artificiais , Fenômenos Biomecânicos , Calorimetria/métodos , Módulo de Elasticidade , Técnicas In Vitro , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração
6.
Carbohydr Polym ; 227: 115282, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31590860

RESUMO

Acoustic emissions are stress or elastic waves produced by a material under external load. Since acoustic emissions are generated from within and transmitted through the substance, the acoustic signature provides insights into the physical and mechanical properties of the material. In this report, we used a constant velocity probe with force and acoustic emission monitoring to investigate the properties of glass phase and gel phase pectin films. In the gel phase films, a constant velocity uniaxial load produced periodic premonitory acoustic emissions with coincident force variations (saw-tooth pattern). SEM images of the gel phase microarchitecture indicated the presence of slip planes. In contrast, the glass phase films demonstrated early acoustic emissions, but effectively no force or acoustic evidence of periodic or premonitory emissions. Microstructural imaging of the glass phase films indicated the presence of early microcracks as well as dense polymerization of the pectin (without evidence of slip planes). We conclude that the water content in the pectin films contributes to not only the physical properties of the films, but also the stick-slip motion observed with constant uniaxial load. Further, acoustic emissions provide a sensitive and practical measure of this mechanical behavior.


Assuntos
Acústica , Pectinas/química , Microscopia Eletrônica de Varredura , Pectinas/ultraestrutura , Transição de Fase , Microtomografia por Raio-X
7.
Sci Rep ; 10(1): 17147, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051468

RESUMO

A drug encapsulation/delivery system using a novel principle is described that is based on an intra-particle migration of calcium ions between a central Ca2+-enriched nanoparticle core and the surrounding shell compartment. The supply of Ca2+ is needed for the formation of a coacervate shell around the nanoparticles, acting as the core of drug-loadable core-shell particles, using the physiological inorganic polymer polyphosphate (polyP). This polyanion has the unique property to form, at an alkaline pH and in the presence of a stoichiometric surplus of calcium ions, water-insoluble and stabile amorphous nanoparticles. At neutral pH a coacervate, the biologically active form of the polymer, is obtained that is composed of polyP and Ca2+. The drug-loaded core-shell particles, built from the Ca-polyP core and the surrounding Ca-polyP shell, were fabricated in two successive steps. First, the formation of the nanoparticle core at pH 10 and a superstoichiometric 2:1 molar ratio between CaCl2 and Na-polyP into which dexamethasone, as a phosphate derivative, was incorporated. Second, the preparation of the coacervate shell, loaded with ascorbic acid, by exposure of the Ca-polyP core to soluble Na-polyP and L-ascorbate (calcium salt). EDX analysis revealed that during this step the Ca2+ ions required for coacervate formation migrate from the Ca-polyP core (with a high Ca:P ratio) to the shell. Electron microscopy of the particles show an electron-dense 150-200 nm sized core surrounded by a less sharply delimited electron-sparse shell. The core-shell particles exhibited strong osteogenic activity in vitro, based on the combined action of polyP and of dexamethasone and ascorbic acid, which reversibly bind to the anionic polyP via ionic Ca2+ bonds. Drug release from the particles occurs after contact with a peptide/protein-containing serum, a process which is almost complete after 10 days and accompanied by the conversion of the nanoparticles into a coacervate. Human osteosarcoma SaOS-2 cells cultivated onto or within an alginate hydrogel matrix showed increased growth/viability and mineralization when the hybrid particles containing dexamethasone and ascorbic acid were embedded in the matrix. The polyP-based core-shell particles have the potential to become a suitable, pH-responsive drug encapsulation/release system, especially for bone, cartilage and wound healing.


Assuntos
Nanopartículas/química , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Polímeros/química , Polifosfatos/química , Alginatos/química , Materiais Biocompatíveis/química , Osso e Ossos/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Cálcio/química , Cartilagem/efeitos dos fármacos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Humanos , Hidrogéis/administração & dosagem , Hidrogéis/química , Íons/química , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Polieletrólitos , Alicerces Teciduais
8.
Biotechnol J ; 15(12): e2000101, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32497376

RESUMO

Cement is used both as a construction material and for medical applications. Previously, it has been shown that the physiological polymer inorganic polyphosphate (polyP) is morphogenetically active in regeneration of skin, bone, and cartilage. The present study investigates the question if this polymer is also a suitable additive to improve the self-healing capacity not only of construction cement but also of inorganic bone void fillers. For the application in the cement, two different polyP-based amorphous nanoparticles (NP) are prepared, amorphous Ca-polyP NP and amorphous Ca-carbonate (ACC) NP. The particles are integrated into poly(methyl methacrylate) in a concentration ratio of 1:10. This material applied onto Portland cement blocks either by brush application or by blow spinning strongly accelerates the self-healing property of the cement after a 10 day incubation period. Most likely, this process depends on bacteria and their membrane-associated alkaline phosphatase, resulting in the formation of calcite from ACC. In a second approach, polyP is integrated into a calcium-silicate-based cement used in reconstitutive medicine. Subsequently, the cement becomes softer and more elastic. The data show that bioinspired polyP/ACC NP are suitable additives to improve the self-healing of construction cement and to biologize bone cement.


Assuntos
Nanopartículas , Osso e Ossos , Cálcio , Carbonatos , Materiais de Construção , Polímeros , Polifosfatos
9.
Dent Mater ; 35(2): 244-256, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30522697

RESUMO

OBJECTIVE: In the present study, we investigated the fusion process between amorphous microparticles of the calcium salt of the physiological polymer comprising orthophosphate units, of inorganic polyphosphate (polyP), and enamel. METHODS: This polymer was incorporated as an ingredient into toothpaste and the fusion process was studied by electron microscopy and by synchrotron-based X-ray tomography microscopy (SRXTM) techniques. RESULTS: The data showed that toothpaste, supplemented with the amorphous Ca-polyP microparticles (aCa-polyP-MP), not only reseals tooth defects on enamel, like carious lesions, and dentin, including exposed dentinal tubules, but also has the potential to induce re-mineralization in the enamel and dentin regions. The formation of a regeneration mineralic zone on the tooth surface induced by aCa-polyP-MP was enhanced upon exposure to artificial saliva, as demonstrated by SRXTM. Energy dispersive X-ray analysis revealed an increase in the calcium/phosphorus atomic ratio of the enamel deposits to values characteristic for the particles during the treatment with polyP applied in the toothpaste, indicating a fusion of the particles with the tooth mineral. SIGNIFICANCE: Our results suggest that toothpaste enriched with aCa-polyP-MP is a promising biomimetic material for accelerating enamel and dentin restoration.


Assuntos
Biomimética , Polifosfatos , Esmalte Dentário , Dentina , Cremes Dentais
10.
J Biomed Mater Res B Appl Biomater ; 107(3): 799-806, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30253044

RESUMO

Pulmonary "air leaks," typically the result of pleural injury caused by lung surgery or chest trauma, result in the accumulation of air in the pleural space (pneumothorax). Air leaks are a major source of morbidity and prolonged hospitalization after pulmonary surgery. Previous work has demonstrated structural heteropolysaccharide (pectin) binding to the mouse pleural glycocalyx. The similar lectin-binding characteristics and ultrastructural features of the human and mouse pleural glycocalyx suggested the potential application of these polymers in humans. To investigate the utility of pectin-based polymers, we developed a simulacrum using freshly obtained human pleura. Pressure-decay leak testing was performed with an inflation maneuver that involved a 3 s ramp to a 3 s plateau pressure; the inflation was completely abrogated after needle perforation of the pleura. Using nonbiologic materials, pressure-decay leak testing demonstrated an exponential decay with a plateau phase in materials with a Young's modulus less than 5. In human pleural testing, the simulacrum was used to test the sealant function of four mixtures of pectin-based polymers. A 50% high-methoxyl pectin and 50% carboxymethylcellulose mixture demonstrated no sealant failures at transpleural pressures of 60 cmH2 O. In contrast, pectin mixtures containing 50% low-methoxyl pectin, 50% amidated low-methoxyl pectins, or 100% carboxymethylcellulose demonstrated frequent sealant failures at transpleural pressures of 40-50 cmH2 O (p < 0.001). Inhibition of sealant adhesion with enzyme treatment, dessication and 4°C cooling suggested an adhesion mechanism dependent upon polysaccharide interpenetration. We conclude that pectin-based heteropolysaccharides are a promising air-tight sealant of human pleural injuries. © 2018 Wiley Periodicals, Inc. J. Biomed. Mater. Res. Part B, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 799-806, 2019.


Assuntos
Pectinas , Pleura/lesões , Animais , Glicocálix/metabolismo , Humanos , Camundongos , Pectinas/química , Pectinas/farmacologia , Pleura/metabolismo , Pleura/patologia , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia
11.
J Biomed Mater Res B Appl Biomater ; 106(6): 2109-2121, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29024311

RESUMO

Prostethic mesh material such as nonabsorbable polypropylene used in open and laparoscopic hernia repair are characterized by controllable mechanical properties but may elicit undesirable physiological reactions due to the nonphysiological inert polymer material. We succeeded in developing a biocompatible coating for these meshes, based on a physiological inorganic polymer, polyphosphate (polyP) that is morphogenetically active and used as a metabolic energy source, and a collagen matrix. The polyP/collagen hydrogel material was prepared by a freeze-extraction method, with amorphous Ca-polyP microparticles. Electron microscopy (SEM and REM) studies revealed that the polyP/collagen coats are built up of ≈50 nm-sized microparticles deposited onto the collagen matrix which forms a continuous layer around the polypropylene fibers that also spans the mesh pores. This bioresorbable inorganic/organic hybrid coat was found to be degraded during three days of incubation in medium/serum. The biomechanical properties of the coated meshes are comparable to those of the unmodified polypropylene meshes, with a higher toughness in longitudinal orientation and a more pronounced extensibility in the transverse orientation. The polyP/collagen coating improved cell attachment to the polypropylene meshes and strongly increase the growth of fibroblasts (MC3T3-E1 cells). Furthermore, those mats upregulate the expression of the gene encoding the stromal cell-derived factor-1α (SDF-1), a mesenchymal stem cells attracting chemokine in the fibroblasts. We conclude that coating of inert polymer meshes with a biocompatible, collagen-inducing polyP/collagen inorganic/organic hybrid layer may improve tissue integration of the meshes and the outcome of surgical hernia repair and may redudce the foreign body reaction in contaminated field. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2109-2121, 2018.


Assuntos
Materiais Revestidos Biocompatíveis/química , Colágeno/química , Herniorrafia , Teste de Materiais , Polipropilenos/química , Telas Cirúrgicas , Animais , Hidrogéis/química , Camundongos , Células NIH 3T3
12.
Tissue Eng Part A ; 24(9-10): 695-702, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28920559

RESUMO

Pleural injury and associated air leaks are a major influence on patient morbidity and healthcare costs after lung surgery. Pectin, a plant-derived heteropolysaccharide, has recently demonstrated potential as an adhesive binding to the glycocalyx of visceral mesothelium. Since bioadhesion is a process likely involving the interpenetration of the pectin-based polymer with the glycocalyx, we predicted that the pectin-based polymer may also be an effective sealant for pleural injury. To explore the potential role of an equal (weight%) mixture of high-methoxyl pectin and carboxymethylcellulose as a pleural sealant, we compared the yield strength of the pectin-based polymer to commonly available surgical products. The pectin-based polymer demonstrated significantly greater adhesion to the lung pleura than the comparison products (p < 0.001). In a 25 g needle-induced lung injury model, pleural injury resulted in an air leak and a loss of airway pressures. After application of the pectin-based polymer, there was a restoration of airway pressure and no measurable air leak. Despite the application of large sheets (50 mm2) of the pectin-based polymer, multifrequency lung impedance studies demonstrated no significant increase in tissue damping (G) or hysteresivity (η)(p > 0.05). In 7-day survival experiments, the application of the pectin-based polymer after pleural injury was associated with no observable toxicity, 100% survival (N = 5), and restored lung function. We conclude that this pectin-based polymer is a strong and nontoxic bioadhesive with the potential for clinical application in the treatment of pleural injuries.


Assuntos
Lesão Pulmonar/cirurgia , Pectinas/química , Pleura/metabolismo , Pleura/cirurgia , Adesivos Teciduais/química , Adesivos Teciduais/metabolismo , Animais , Epitélio/metabolismo , Epitélio/cirurgia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura
13.
J Neurosurg Spine ; 26(2): 190-198, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27689420

RESUMO

OBJECTIVE The goal of this study was to demonstrate the clinical and technical nuances of a minimally invasive, dorsolateral, tubular approach for partial odontoidectomy, autologous bone augmentation, and temporary C1-2 fixation to treat dens pseudarthrosis. METHODS A cadaveric feasibility study, a 3D virtual reality reconstruction study, and the subsequent application of this approach in 2 clinical cases are reported. Eight procedures were completed in 4 human cadavers. A minimally invasive, dorsolateral, tubular approach for odontoidectomy was performed with the aid of a tubular retraction system, using a posterolateral incision and an oblique approach angle. Fluoroscopy and postprocedural CT, using 3D volumetric averaging software, were used to evaluate the degree of bone removal of C1-2 lateral masses and the C-2 pars interarticularis. Two clinical cases were treated using the approach: a 23-year-old patient with an odontoid fracture and pseudarthrosis, and a 35-year-old patient with a history of failed conservative treatment for odontoid fracture. RESULTS At 8 cadaveric levels, the mean volumetric bone removal of the C1-2 lateral masses on 1 side was 3% ± 1%, and the mean resection of the pars interarticularis on 1 side was 2% ± 1%. The median angulation of the trajectory was 50°, and the median distance from the midline of the incision entry point on the skin surface was 67 mm. The authors measured the diameter of the working channel in relation to head positioning and assessed a greater working corridor of 12 ± 4 mm in 20° inclination, 15° contralateral rotation, and 5° lateral flexion to the contralateral side. There were no violations of the dura. The reliability of C-2 pedicle screws and C-1 lateral mass screws was 94% (15 of 16 screws) with a single lateral breach. The patients treated experienced excellent clinical outcomes. CONCLUSIONS A minimally invasive, dorsolateral, tubular odontoidectomy and autologous bone augmentation combined with C1-2 instrumentation has the ability to provide excellent 1-stage management of an odontoid pseudarthrosis. The procedure can be completed safely and successfully with minimal blood loss and little associated morbidity. This approach has the potential to provide not only a less invasive approach but also a function-preserving option to treat complex C1-2 anterior disease.


Assuntos
Vértebras Cervicais/lesões , Vértebras Cervicais/cirurgia , Procedimentos Ortopédicos/métodos , Pseudoartrose/cirurgia , Radiografia Intervencionista/métodos , Fraturas da Coluna Vertebral/cirurgia , Adulto , Parafusos Ósseos , Cadáver , Vértebras Cervicais/diagnóstico por imagem , Simulação por Computador , Estudos de Viabilidade , Fluoroscopia/métodos , Humanos , Imageamento Tridimensional , Masculino , Modelos Anatômicos , Fraturas da Coluna Vertebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Interface Usuário-Computador , Adulto Jovem
14.
Dent Mater ; 33(7): 753-764, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28499493

RESUMO

OBJECTIVE: In this study we demonstrate that inorganic polyphosphate (polyP) exhibits a dual protective effect on teeth: it elicits a strong antibacterial effect against the cariogenic bacterium Streptococcus mutans and, in form of amorphous calcium polyP microparticles (size of 100-400nm), it efficiently reseals cracks/fissures in the tooth enamel and dentin. METHODS: Three different formulations of amorphous polyP microparticles (Ca-polyP, Zn-polyP and Sr-polyP) were prepared. RESULTS: Among the different polyP microparticles tested, the Ca-polyP microparticles, as a component of a newly developed formulation of a dentifrice, turned out to be most effective in inhibiting growth of S. mutans. Further studies have shown that it is mainly the soluble polyP, which has a strong antibacterial activity, either given as sodium salt of polyP or formed by partial disintegration of the microparticles via the alkaline phosphatase present in the oropharyngeal cavity. In addition, we demonstrate that the developed toothpaste containing incorporated amorphous polyP microparticles, efficiently reduces dental biofilm formation. SIGNIFICANCE: From our results we conclude that polyP microparticles, if added to toothpaste in an amorphous state, might be beneficial not only for restoring tooth damages but also because they provide a suitable depot of functionally/antibacterially active soluble polyP.


Assuntos
Dentifrícios , Selantes de Fossas e Fissuras , Polifosfatos , Biofilmes , Cárie Dentária , Esmalte Dentário , Streptococcus mutans
15.
Polymers (Basel) ; 9(4)2017 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30970799

RESUMO

Based on natural principles, we developed a novel toothpaste, containing morphogenetically active amorphous calcium polyphosphate (polyP) microparticles which are enriched with retinyl acetate ("a-polyP/RA-MP"). The spherical microparticles (average size, 550 ± 120 nm), prepared by co-precipitating soluble Na-polyP with calcium chloride and supplemented with retinyl acetate, were incorporated into a base toothpaste at a final concentration of 1% or 10%. The "a-polyP/RA-MP" ingredient significantly enhanced the stimulatory effect of the toothpaste on the growth of human mesenchymal stem cells (MSC). This increase was paralleled by an upregulation of the MSC marker genes for osteoblast differentiation, collagen type I and alkaline phosphatase. In addition, polyP, applied as Zn-polyP microparticles ("Zn-a-polyP-MP"), showed a distinct inhibitory effect on growth of Streptococcus mutans, in contrast to a toothpaste containing the broad-spectrum antibiotic triclosan that only marginally inhibits this cariogenic bacterium. Moreover, we demonstrate that the "a-polyP/RA-MP"-containing toothpaste efficiently repairs cracks/fissures in the enamel and dental regions and reseals dentinal tubules, already after a five-day treatment (brushing) of teeth as examined by SEM (scanning electron microscopy) and semi-quantitative EDX (energy-dispersive X-ray spectroscopy). The occlusion of the dentin cracks by the microparticles turned out to be stable and resistant against short-time high power sonication. Our results demonstrate that the novel toothpaste prepared here, containing amorphous polyP microparticles enriched with retinyl acetate, is particularly suitable for prevention/repair of (cariogenic) damages of tooth enamel/dentin and for treatment of dental hypersensitivity. While the polyP microparticles function as a sealant for dentinal damages and inducer of remineralization processes, the retinyl acetate acts as a regenerative stimulus for collagen gene expression in cells of the surrounding tissue, the periodontium.

16.
Acta Biomater ; 64: 377-388, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28966095

RESUMO

Here we describe the formulation of a morphogenetically active bio-ink consisting of amorphous microparticles (MP) prepared from Ca2+ and the physiological inorganic polymer, polyphosphate (polyP). Those MP had been fortified by mixing with poly-ε-caprolactone (PCL) to allow 3D-bioprinting. The resulting granular PCL/Ca-polyP-MP hybrid material, liquefied by short-time heating to 100 °C, was used for the 3D-printing of tissue-like scaffolds formed by strands with a thickness of 400 µm and a stacked architecture leaving ≈0.5 mm2-sized open holes enabling cell migration. The printed composite scaffold turned out to combine suitable biomechanical properties (Young's modulus of 1.60 ±â€¯0.1 GPa; Martens hardness of 153 ±â€¯28 MPa), matching those of cortical and trabecular bone, with morphogenetic activity. This scaffold was capable of attracting and promoting the growth of human bone-related SaOS-2 cells as demonstrated by staining for cell viability (Calcein AM), cell density (DRAQ5) and SEM studies. Furthermore, the hybrid material was demonstrated to upregulate the steady-state-expression of the cell migration-inducing chemokine SDF-1α. EDX analysis and FTIR measurements revealed the presence of hydroxyapatite in the mineral deposits formed on the scaffold surface. Based on the results we conclude that granular PCL/Ca-polyP-MP hybrid material is suitable for the fabrication of bioprintable scaffold which comprises not only biomechanical stability but also morphogenetic potential. STATEMENT OF SIGNIFICANCE: In present-day regenerative engineering efforts, biomaterial- and cell-based strategies are proposed that meet the required functional and spatial characteristics and variations, especially in the transition regions between soft (cartilage, tendon or ligament) and hard (bone) tissues. In a biomimetic approach we succeeded to fabricate amorphous Ca-polyP nanoparticles/microparticles which are highly biocompatible. Together with polycaprolactone (PCL), polyP can be bio-printed. This hybrid material attracts the cells, as documented optically as well as by a gene-expression studies. Since PCL is already a FDA-approved organic and inert polymer and polyP a physiological biologically active component this new bio-hybrid material has the potential to restore physiological functions, including bone remodelling and regeneration if used as implant.


Assuntos
Osso e Ossos/metabolismo , Durapatita/química , Poliésteres/química , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química , Osso e Ossos/química , Osso e Ossos/citologia , Linhagem Celular Tumoral , Humanos , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
17.
Biomed Mater ; 11(3): 035005, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27147677

RESUMO

In this study the effect of amorphous calcium carbonate (ACC) microparticles and amorphous calcium polyphosphate (polyP) microparticles (termed aCa-polyP-MP) on bone mineral forming cells/tissue was investigated in vitro and in vivo. The ACC particles (termed ACC-P10-MP) were prepared in the presence of Na-polyP. Only the combinations of polyP and ACC microparticles enhanced the proliferation rate of human mesenchymal stem cells (MSCs). Gene expression studies revealed that ACC causes an upregulation of the expression of the cell membrane-associated carbonic anhydrase IX (CA IX; formation of ACC), while the transcript level of the alkaline phosphatase (ALP; liberation of orthophosphate from polyP) changes only relatively little. In contrast, aCa-polyP-MP primarily induces ALP expression. If both components are applied together a strong stimulation of expression of both marker genes is observed. In order to investigate whether ACC also enhances bone regeneration induced by polyP in vivo, the particles were encapsulated into PLGA (poly(d,l-lactide-co-glycolide)) microspheres (diameter ~800 µm) and implanted into rat critical-size calvarial defects. The studies revealed that animals that received aCa-polyP-MP microspheres showed an increased rate of regeneration compared to ß-tri-calcium phosphate (ß-TCP) controls. This effect is even accelerated if microspheres with both aCa-polyP-MP and ACC-P10-MP (1 : 1 weight ratio) are applied, resulting in an almost complete restoration of the defect area after 12 weeks. qRT-PCR analyses of tissue sections through the regeneration zone with microspheres containing both aCa-polyP-MP and ACC-P10-MP revealed a significantly higher upregulation of expression of the marker genes compared to each of the components alone. The Young's moduli for microspheres containing aCa-polyP-MP (1.74 MPa) and aCa-polyP-MP/ACC-P10-MP (2.38 MPa) were markedly higher compared to ß-TCP-controls (0.63 mPa). Our results show that the combined application of ACC and Ca-polyP (both in the amorphous state) opens new strategies for the development of regenerative implants for the reconstruction of bone defects.


Assuntos
Regeneração Óssea , Fosfatos de Cálcio/química , Ácido Láctico/química , Células-Tronco Mesenquimais/citologia , Ácido Poliglicólico/química , Alicerces Teciduais , Fosfatase Alcalina/metabolismo , Animais , Módulo de Elasticidade , Humanos , Masculino , Microesferas , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polifosfatos/química , Pressão , Ratos , Ratos Sprague-Dawley , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA