Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 604(7907): 662-667, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35478237

RESUMO

Plastic waste poses an ecological challenge1-3 and enzymatic degradation offers one, potentially green and scalable, route for polyesters waste recycling4. Poly(ethylene terephthalate) (PET) accounts for 12% of global solid waste5, and a circular carbon economy for PET is theoretically attainable through rapid enzymatic depolymerization followed by repolymerization or conversion/valorization into other products6-10. Application of PET hydrolases, however, has been hampered by their lack of robustness to pH and temperature ranges, slow reaction rates and inability to directly use untreated postconsumer plastics11. Here, we use a structure-based, machine learning algorithm to engineer a robust and active PET hydrolase. Our mutant and scaffold combination (FAST-PETase: functional, active, stable and tolerant PETase) contains five mutations compared to wild-type PETase (N233K/R224Q/S121E from prediction and D186H/R280A from scaffold) and shows superior PET-hydrolytic activity relative to both wild-type and engineered alternatives12 between 30 and 50 °C and a range of pH levels. We demonstrate that untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week. FAST-PETase can also depolymerize untreated, amorphous portions of a commercial water bottle and an entire thermally pretreated water bottle at 50 ºC. Finally, we demonstrate a closed-loop PET recycling process by using FAST-PETase and resynthesizing PET from the recovered monomers. Collectively, our results demonstrate a viable route for enzymatic plastic recycling at the industrial scale.


Assuntos
Hidrolases , Aprendizado de Máquina , Polietilenotereftalatos , Engenharia de Proteínas , Hidrolases/genética , Hidrolases/metabolismo , Hidrólise , Plásticos , Polietilenotereftalatos/metabolismo
2.
Curr Opin Biotechnol ; 84: 103021, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37980777

RESUMO

Biological catalysts are emerging with the capability to depolymerize a wide variety of plastics. Improving and discovering these catalysts has leveraged a range of tools, including microbial ecology studies, high-throughput selections, and computationally guided mutational studies. In this review, we discuss the prospects for biological solutions to plastic recycling and upcycling with a focus on major advances in polyethylene terephthalate depolymerization, expanding the range of polymers with known biological catalysts, and the utilization of derived products. We highlight several recent improvements in enzymes and reaction properties, the discovery of a wide variety of novel plastic-depolymerizing biocatalysts, and how depolymerization products can be utilized in recycling and upcycling.


Assuntos
Petróleo , Mutação , Polímeros , Reciclagem , Plásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA