Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Oral Rehabil ; 51(7): 1250-1302, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38570927

RESUMO

BACKGROUND: Various medical conditions and the drugs used to treat them have been shown to impede or complicate dental implant surgery. It is crucial to carefully monitor the medical status and potential post-operative complications of patients with systemic diseases, particularly elderly patients, to minimize the risk of health complications that may arise. AIM: The purpose of this study was to review the existing evidence on the viability of dental implants in patients with systemic diseases and to provide practical recommendations to achieve the best possible results in the corresponding patient population. METHODS: The information for our study was compiled using data from PubMed, Scopus, Web of Science and Google Scholar databases and searched separately for each systemic disease included in our work until October 2023. An additional manual search was also performed to increase the search sensitivity. Only English-language publications were included and assessed according to titles, abstracts and full texts. RESULTS: In total, 6784 studies were found. After checking for duplicates and full-text availability, screening for the inclusion criteria and manually searching reference lists, 570 articles remained to be considered in this study. CONCLUSION: In treating patients with systemic conditions, the cost-benefit analysis should consider the patient's quality of life and expected lifespan. The success of dental implants depends heavily on ensuring appropriate maintenance therapy, ideal oral hygiene standards, no smoking and avoiding other risk factors. Indications and contraindications for dental implants in cases of systemic diseases are yet to be more understood; broader and hardcore research needs to be done for a guideline foundation.


Assuntos
Implantes Dentários , Humanos , Implantes Dentários/efeitos adversos , Qualidade de Vida , Implantação Dentária Endóssea/efeitos adversos , Complicações Pós-Operatórias/prevenção & controle , Análise Custo-Benefício , Fatores de Risco , Assistência Odontológica para Doentes Crônicos
2.
J Basic Microbiol ; 63(12): 1319-1347, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37726220

RESUMO

Several resistance mechanisms are involved in dental caries, including oral biofilms. An accumulation of bacteria on the surface of teeth is called plaque. Periodontitis and gingivitis are caused by dental plaque. In this review article, we aimed to review the studies associated with the application of photodynamic therapy (PDT) to prevent and treat various microbial biofilm-caused oral diseases in recent decades. There are several studies published in PubMed that have described antimicrobial photodynamic therapy (APDT) effects on microorganisms. Several in vitro and in vivo studies have demonstrated the potential of APDT for treating endodontic, periodontal, and mucosal infections caused by bacteria as biofilms. Reactive oxygen species (ROS) are activated in the presence of oxygen by integrating a nontoxic photosensitizer (PS) with appropriate wavelength visible light. By causing irreversible damage to microorganisms, ROS induces some biological and photochemical events. Testing several wavelengths has been conducted to identify potential PS for APDT. A standard protocol is not yet available, and the current review summarizes findings from dental studies on APDT.


Assuntos
Anti-Infecciosos , Cárie Dentária , Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio , Cárie Dentária/tratamento farmacológico , Cárie Dentária/prevenção & controle , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Biofilmes , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Bactérias
3.
J Biomed Mater Res B Appl Biomater ; 112(1): e35368, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247251

RESUMO

The effect of Wharton's jelly mesenchymal stem cells conditioned medium (WJMSCs-CM) and zinc oxide nanoparticles (ZnO-NPs) on cultured human gingival fibroblasts on various barrier membranes was investigated in this study. In this study, human gingival fibroblasts were prepared and cultured on three membranes: collagen membrane, acellular dermal matrix (ADM) with ZnO-NPs, and ADM without ZnO-NPs. WJMSCs-CM was given to the testing groups, while control groups received the same membranes without WJMSCs-CM. Following 48 and 72 h, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tests were performed to assess cell survival. Cell proliferation on the membranes was also evaluated using 4',6-diamidino-2-phenylindole (DAPI) staining after 48 and 72 h. Field emission scanning electron microscopy was used to determine membrane surface structure and cell adhesion. Nanoparticles were also subjected to an energy-dispersive x-ray analysis to identify their chemical structure. Two-way analysis of variance was used to conduct the statistical analysis. The p-value ≤.05 was considered significant. When ADM-ZnO-NPs were combined with CM, fibroblast viability, and adhesion significantly differed from ADM-ZnO-NPs alone. DAPI results confirmed cell proliferation in all six groups on both experiment days. The abundance and concentrated distribution of cells during cell proliferation were found in CM-containing membranes, specifically the ADM-ZnO-NPs membrane, demonstrating the improved biocompatibility of the ADM-ZnO-NPs membrane for cell proliferation. The other groups did not significantly differ from one another. WJMSCs-CM positively affected the viability and proliferation of gingival fibroblasts, but only marginally. Under certain conditions, ZnO-NPs below a specific concentration increased the biocompatibility of the membranes.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Óxido de Zinco , Humanos , Meios de Cultivo Condicionados/farmacologia , Fibroblastos , Proliferação de Células
4.
Curr Stem Cell Res Ther ; 19(5): 712-724, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37259210

RESUMO

Critical-sized bone defects are a challenging issue during bone regeneration. Bone tissue engineering is aimed to repair such defects using biomimicking scaffolds and stem cells. Electrospinning allows the fabrication of biocompatible, biodegradable, and strengthened scaffolds for bone regeneration. Natural and synthetic polymers, alone or in combination, have been employed to fabricate scaffolds with appropriate properties for the osteogenic differentiation of stem cells. Dental pulps are rich in stem cells, and dental pulp stem cells (DPSCs) have a high capacity for proliferation, differentiation, immunomodulation, and trophic factor expression. Researchers have tried to enhance osteogenesis through scaffold modification approaches, including incorporation or coating with mineral, inorganic materials, and herbal extract components. Among them, the incorporation of nanofibers with hyaluronic acid (HA) has been widely used to promote osteogenesis. In this review, the electrospun scaffolds and their modifications used in combination with DPSCs for bone regeneration are discussed.


Assuntos
Polpa Dentária , Osteogênese , Humanos , Alicerces Teciduais , Regeneração Óssea , Engenharia Tecidual , Diferenciação Celular , Células-Tronco , Proliferação de Células , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA