Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomaterials ; 307: 122528, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522326

RESUMO

Piezoelectric biomaterials have demonstrated significant potential in the past few decades to heal damaged tissue and restore cellular functionalities. Herein, we discuss the role of bioelectricity in tissue remodeling and explore ways to mimic such tissue-like properties in synthetic biomaterials. In the past decade, biomedical engineers have adopted emerging functional biomaterials-based tissue engineering approaches using innovative bioelectronic stimulation protocols based on dynamic stimuli to direct cellular activation, proliferation, and differentiation on engineered biomaterial constructs. The primary focus of this review is to discuss the concepts of piezoelectric energy harvesting, piezoelectric materials, and their application in soft (skin and neural) and hard (dental and bone) tissue regeneration. While discussing the prospective applications as an engineered tissue, an important distinction has been made between piezoceramics, piezopolymers, and their composites. The superiority of piezopolymers over piezoceramics to circumvent issues such as stiffness mismatch, biocompatibility, and biodegradability are highlighted. We aim to provide a comprehensive review of the field and identify opportunities for the future to develop clinically relevant and state-of-the-art biomaterials for personalized and remote health care.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Engenharia Tecidual/métodos , Pele , Cicatrização , Engenharia Biomédica
2.
Artigo em Inglês | MEDLINE | ID: mdl-39226455

RESUMO

The treatment of irregular-shaped and critical-sized bone defects poses a clinical challenge. Deployable, self-fitting tissue scaffolds that can be implanted by minimally invasive procedures are a promising solution. Toward this, we fabricated NIR-responsive and programmable polylactide-co-trimethylene carbonate (PLMC) scaffolds nanoengineered with polydopamine nanoparticles (PDA) by extrusion-based three-dimensional (3D) printing. The 3D-printed scaffolds demonstrated excellent (>99%), fast (under 30 s), and tunable shape recovery under NIR irradiation. PLMC-PDA composites demonstrated significantly higher osteogenic potential in vitro as revealed by the significantly enhanced alkaline phosphatase (ALP) secretion and mineral deposition in contrast to neat PLMC. Intraoperative deployability and in vivo bone regeneration ability of PLMC-PDA composites were demonstrated, using self-fitting scaffolds in critical-sized cranial bone defects in rabbits. The 3D-printed scaffolds were deformed into compact shapes that could self-fit into the defect shape intraoperatively under low power intensity (0.76 W cm-2) NIR. At 6 and 12 weeks postsurgical implantation, near-complete bone regeneration was observed in PLMC-PDA composites, unlike neat PLMC through microcomputed tomography (micro-CT) analysis. The potential clinical utility of the 3D-printed composites to secure complex defects was confirmed through self-fitting of the scaffolds into irregular defects in ex vivo models of rabbit tibia, mandible, and tooth models. Taken together, the composite scaffolds fabricated here offer an innovative strategy for minimally invasive deployment to fit irregular and complex tissue defects for bone tissue regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA