RESUMO
A homolog of the mitochondrial succinate/fumarate carrier from yeast (Sfc1p) has been found in the Arabidopsis genome, named AtSFC1. The AtSFC1 gene was expressed in Escherichia coli, and the gene product was purified and reconstituted in liposomes. Its transport properties and kinetic parameters demonstrated that AtSFC1 transports citrate, isocitrate and aconitate and, to a lesser extent, succinate and fumarate. This carrier catalyzes a fast counter-exchange transport as well as a low uniport of substrates, exhibits a higher transport affinity for tricarboxylates than dicarboxylates, and is inhibited by pyridoxal 5'-phosphate and other inhibitors of mitochondrial carriers to various degrees. Gene expression analysis indicated that the AtSFC1 transcript is mainly present in heterotrophic tissues, and fusion with a green-fluorescent protein localized AtSFC1 to the mitochondria. Furthermore, 35S-AtSFC1 antisense lines were generated and characterized at metabolic and physiological levels in different organs and at various developmental stages. Lower expression of AtSFC1 reduced seed germination and impaired radicle growth, a phenotype that was related to reduced respiration rate. These findings demonstrate that AtSFC1 might be involved in storage oil mobilization at the early stages of seedling growth and in nitrogen assimilation in root tissue by catalyzing citrate/isocitrate or citrate/succinate exchanges.
Assuntos
Arabidopsis , Proteínas de Transporte , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Ácidos Graxos/metabolismo , Fumaratos/metabolismo , Expressão Gênica , Genes Fúngicos , Genes de Plantas , Cinética , Lipossomos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Nitrogênio/metabolismo , Saccharomyces cerevisiae/genética , Plântula/crescimento & desenvolvimento , Succinatos/metabolismo , Ácidos Tricarboxílicos/metabolismoRESUMO
The essential cofactors CoA, FAD and NAD+ are synthesized outside the peroxisomes and therefore must be transported into the peroxisomal matrix where they are required for important processes. In the present study we have functionally identified and characterized SLC25A17 (solute carrier family 25 member 17), which is the only member of the mitochondrial carrier family that has previously been shown to be localized in the peroxisomal membrane. Recombinant and purified SLC25A17 was reconstituted into liposomes. Its transport properties and kinetic parameters demonstrate that SLC25A17 is a transporter of CoA, FAD, FMN and AMP, and to a lesser extent of NAD+, PAP (adenosine 3',5'-diphosphate) and ADP. SLC25A17 functioned almost exclusively by a counter-exchange mechanism, was saturable and was inhibited by pyridoxal 5'-phosphate and other mitochondrial carrier inhibitors. It was expressed to various degrees in all of the human tissues examined. Its main function is probably to transport free CoA, FAD and NAD+ into peroxisomes in exchange for intraperoxisomally generated PAP, FMN and AMP. The present paper is the first report describing the identification and characterization of a transporter for multiple free cofactors in peroxisomes.
Assuntos
Coenzima A/química , Flavina-Adenina Dinucleotídeo/química , Proteínas de Membrana/genética , NAD/química , Difosfato de Adenosina/química , Monofosfato de Adenosina/química , Escherichia coli , Mononucleotídeo de Flavina/química , Expressão Gênica , Humanos , Cinética , Lipossomos/química , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Especificidade de Órgãos , Peroxissomos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificaçãoRESUMO
The development of biorefinery approaches is of great relevance for the sustainable production of valuable compounds. In accordance with circular economy principles, waste cooking oils (WCOs) are renewable resources and biorefinery feedstocks, which contribute to a reduced impact on the environment. Frequently, this waste is wrongly disposed of into municipal sewage systems, thereby creating problems for the environment and increasing treatment costs in wastewater treatment plants. In this study, regenerated WCOs, which were intended for the production of biofuels, were transformed through a chemo-enzymatic approach to produce hydroxy fatty acids, which were further used in polycondensation reaction for polyester production. Escherichia coli whole cell biocatalyst containing the recombinantly produced Elizabethkingia meningoseptica Oleate hydratase (Em_OhyA) was used for the biocatalytic hydration of crude WCOs-derived unsaturated free fatty acids for the production of hydroxy fatty acids. Further hydrogenation reaction and methylation of the crude mixture allowed the production of (R)- 10-hydroxystearic acid methyl ester that was further purified with a high purity (> 90%), at gram scale. The purified (R)- 10-hydroxystearic acid methyl ester was polymerized through a polycondensation reaction to produce the corresponding polyester. This work highlights the potential of waste products to obtain bio-based hydroxy fatty acids and polyesters through a biorefinery approach.
Assuntos
Ácidos Graxos , Poliésteres , Óleos , Biocombustíveis , Ácidos Graxos Insaturados , Culinária , ÉsteresRESUMO
Mitochondrial carriers are a family of transport proteins that shuttle metabolites, nucleotides, and coenzymes across the mitochondrial membrane. The function of only a few of the 35 Saccharomyces cerevisiae mitochondrial carriers still remains to be uncovered. In this study, we have functionally defined and characterized the S. cerevisiae mitochondrial carrier Yhm2p. The YHM2 gene was overexpressed in S. cerevisiae, and its product was purified and reconstituted into liposomes. Its transport properties, kinetic parameters, and targeting to mitochondria show that Yhm2p is a mitochondrial transporter for citrate and oxoglutarate. Reconstituted Yhm2p also transported oxaloacetate, succinate, and fumarate to a lesser extent, but virtually not malate and isocitrate. Yhm2p catalyzed only a counter-exchange transport that was saturable and inhibited by sulfhydryl-blocking reagents but not by 1,2,3-benzenetricarboxylate (a powerful inhibitor of the citrate/malate carrier). The physiological role of Yhm2p is to increase the NADPH reducing power in the cytosol (required for biosynthetic and antioxidant reactions) and probably to act as a key component of the citrate-oxoglutarate NADPH redox shuttle between mitochondria and cytosol. This protein function is based on observations documenting a decrease in the NADPH/NADP(+) and GSH/GSSG ratios in the cytosol of DeltaYHM2 cells as well as an increase in the NADPH/NADP(+) ratio in their mitochondria compared with wild-type cells. Our proposal is also supported by the growth defect displayed by the DeltaYHM2 strain and more so by the DeltaYHM2DeltaZWF1 strain upon H(2)O(2) exposure, implying that Yhm2p has an antioxidant function.