RESUMO
Poly(vinyl chloride) (PVC), a polymer widely used in common household and industrial materials, undergoes photodegradation upon ultraviolet irradiation, leading to undesirable physicochemical properties and a reduced lifetime. In this study, four telmisartan organotin(IV) compounds were tested as photostabilizers against photodegradation. PVC films (40-µm thickness) containing these compounds (0.5 wt%) were irradiated with ultraviolet light at room temperature for up to 300 h. Changes in various polymeric parameters, including the growth of hydroxyl, carbonyl, and alkene functional groups, weight loss, reduction in molecular weight, and appearance of surface irregularities, were investigated to test the efficiency of the photostabilizers. The changes were more noticeable in the blank PVC film than in the films containing the telmisartan organotin(IV) compounds. These results reflect that these compounds effectively inhibit the photodegradation of PVC, possibly by acting as hydrogen chloride and radical scavengers, peroxide decomposers, and primary photostabilizers. The synthesized organotin(IV) complexes could be used as PVC additives to enhance photostability.
Assuntos
Compostos Orgânicos de Estanho/síntese química , Cloreto de Polivinila/química , Telmisartan/química , Ácido Clorídrico/química , Estrutura Molecular , Peso Molecular , Compostos Orgânicos de Estanho/química , Fotólise , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Five Schiff bases derived from melamine have been used as efficient additives to reduce the process of photodegradation of poly(vinyl chloride) films. The performance of Schiff bases has been investigated using various techniques. Poly(vinyl chloride) films containing Schiff bases were irradiated with ultraviolet light and any changes in their infrared spectra, weight, and the viscosity of their average molecular weight were investigated. In addition, the surface morphology of the films was inspected using a light microscope, atomic force microscopy, and a scanning electron micrograph. The additives enhanced the films resistance against irradiation and the polymeric surface was much smoother in the presence of the Schiff bases compared with the blank film. Schiff bases containing an ortho-hydroxyl group on the aryl rings showed the greatest photostabilization effect, which may possibly have been due to the direct absorption of ultraviolet light. This phenomenon seems to involve the transfer of a proton as well as several intersystem crossing processes.
Assuntos
Cloreto de Polivinila/química , Bases de Schiff/química , Triazinas/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Estrutura Molecular , Fotólise , Raios UltravioletaRESUMO
OBJECTIVES: The incidence of head and neck squamous cell carcinoma (HNSCC) continues to increase and although advances have been made in treatment, it still has a poor overall survival with local relapse being common. Conventional imaging methods are not efficient at detecting recurrence at an early stage when still potentially curable. The aim of this study was to test the feasibility of using saliva to detect the presence of oral squamous cell carcinoma (OSCC) and to provide additional evidence for the potential of this approach. MATERIALS AND METHODS: Fresh tumor, whole blood and saliva were collected from patients with OSCC before treatment. Whole exome sequencing (WES) or gene panel sequencing of tumor DNA was performed to identify somatic mutations in tumors and to select genes for performing gene panel sequencing on saliva samples. RESULTS: The most commonly mutated genes identified in primary tumors by DNA sequencing were TP53 and FAT1. Gene panel sequencing of paired saliva samples detected tumor derived mutations in 9 of 11 (82%) patients. The mean variant allele frequency for the mutations detected in saliva was 0.025 (range 0.004 - 0.061). CONCLUSION: Somatic tumor mutations can be detected in saliva with high frequency in OSCC irrespective of site or stage of disease using a limited panel of genes. This work provides additional evidence for the suitability of using saliva as liquid biopsy in OSCC and has the potential to improve early detection of recurrence in OSCC. Trials are currently underway comparing this approach to standard imaging techniques.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Saliva , Recidiva Local de Neoplasia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Mutação , Biomarcadores Tumorais/genéticaRESUMO
Although plastic induces environmental damages, almost the consumption of poly(vinyl chloride) never stops increasing. Therefore, this work abstracted by two parts, first, synthesis of Schiff bases 1-4 compounds through the reaction of amino group with appropriate aromatic aldehyde, reaction of PVC with Schiff bases compounds 1-4 in THF to form a new modified PVC-1, PVC-2, PVC-3, and PVC-4. The structures of Schiff bases 1-4 and the modified PVC-1, PVC-2, PVC-3, and PVC-4 have been characterized by different spectroscopic analyses. Second, the influence of introducing 4-amino-1,2,4-triazole as a pendent groups into PVC chain investigated on photostability rules of tests. The modified polymers photostability investigated by observing indices (ICO, Ipo, and IOH), weight loss, UV and morphological studies, and all results obtained indicated that PVC-1, PVC-2, PVC-3 and PVC-4 gave lower growth rate of ICO, IPO, and IOH through UV exposure time. The photostability are given as PVC-4 < PVC-3 < PVC-2 < PVC-1 from different mechanisms which suggested building on existence of 4-amino-1,2,4-triazole moieties in the polymer chain.