Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
AAPS PharmSciTech ; 24(8): 235, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973629

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive, fibrotic interstitial lung disease with unclear etiology and increasing prevalence. Pulmonary administration can make the drug directly reach the lung lesion location and reduce systemic toxic and side effects. The effectiveness of lenalidomide (Len) liposomal lung delivery in idiopathic pulmonary fibrosis was investigated. Len liposomes (Len-Lip) were prepared from soybean lecithin, cholesterol (Chol), and medicine in different weight ratios by thin film hydration method. The Len-Lip were spherical in shape with an average size of 226.7 ± 1.389 nm. The liposomes with a higher negative zeta potential of around - 34 mV, which was conducive to improving stability by repelling each other. The drug loading and encapsulation rate were 2.42 ± 0.07% and 85.47 ± 2.42%. Len-Lip had little toxicity at the cellular level and were well taken up by cells. At bleomycin-induced pulmonary fibrosis model mice, inhalation Len-Lip could improve lung function and decrease lung hydroxyproline contents, and alleviate pulmonary fibrosis state. Inhalation Len-Lip provided a reference for the treatment of idiopathic pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Lipossomos , Camundongos , Animais , Lipossomos/farmacologia , Bleomicina/efeitos adversos , Lenalidomida/farmacologia , Lenalidomida/uso terapêutico , Pulmão , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia
2.
AAPS PharmSciTech ; 23(1): 29, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34931279

RESUMO

The anti-tumor effect of selenium nanoparticles (SeNPs) has received more and more attention. However, the clinical application of SeNPs is not optimistic due to the poor stability. To improve the stability of SeNPs, many polymers are used to modify the SeNPs. However, most of the polymers are not approved by FDA. It is significant to develop a SeNPs product with good stability for clinic application. Dextran 70,000 (T70) and poloxamer 188 (P188) are FDA-approved pharmaceutical injection excipients. In this study, we decorate SeNPs with T70 and P188 and assess the physicochemical characterization, storage stability, and anti-tumor activities of T70-SeNPs and P188-SeNPs. Transmission electron microscopy (TEM) shows that T70-SeNPs and P188-SeNPs are spherical particles with particle sizes of 110 nm and 60 nm respectively. Fourier-Transform Infrared Spectra (FT-IR) show that T70 or P188 can interact with SeNPs through hydrogen bonding. Stability study shows that P188-SeNPs freeze-dried powder and T70-SeNPs freeze-dried powder remain stable at 4℃ for 6 months. T70-SeNPs and P188-SeNPs can aggregate in cell matrix and play an anti-tumor role to HepG2 by promoting apoptosis, increasing reactive oxygen species (ROS) content and reducing mitochondrial membrane potential (MMP). This study can provide reference for industrial production of SeNPs products.


Assuntos
Nanopartículas , Selênio , Dextranos , Poloxâmero , Pós , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Mol Pharm ; 12(2): 463-73, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25581352

RESUMO

In the previous study, we have synthesized an amphiphilic copolymer of nanostructure-forming material and P-glycoprotein (P-gp) inhibitor, lysine-linked ditocopherol polyethylene glycol 2000 succinate (PLV2K). The cytotoxicty in vitro and anticancer efficacy in vivo after intravenous administration of DOX-loaded PLV2K micelles (PLV2K-DOX) was found more effective than DOX solution (DOX-Sol). However, its performance and mechanism on oral absorption of doxorubicin are not well understood yet. PLV2K-DOX are spherical micelles with a narrow size distribution of 20.53 ± 2.44 nm. With an in situ intestinal perfusion model, the intestinal absorption potential of PLV2K-DOX was evaluated in comparison with DOX-Sol. PLV2K-DOX was specifically absorbed in duodenum and ileum sites of rats after oral administration. The intestinal absorption rate (Ka) of PLV2K-DOX is 3.19-, 1.61-, and 1.80-fold higher than that of DOX-Sol in duodenum, jejunum, and ileum, respectively. In Caco-2 uptake studies, PLV2K-DOX micelles significantly improve the internalized amount of DOX by P-gp inhibition of free PLV2K copolymer and endocytosis of DOX-loaded nanoparticles. Moreover, PLV2K-DOX micelles improve the membrane permeability of DOX by multiple transcytosis mechanisms, including caveolin-, clathrin-dependent, and caveolin-/clathrin-independent transcytosis in Caco-2 transport studies. However, the transepithelia electrical resistance (TEER) of Caco-2 cellular monolayer is not changed, suggesting no involvement of paracellular transport of PLV2K-DOX. In vivo pharmacokinetics in rats following oral administration demonstrated that PLV2K-DOX demonstrates higher AUC (5.6-fold) and longer t1/2 (1.2-fold) than DOX-Sol. The findings suggest the new PLV2K micelles might provide an effective nanoplatform for oral delivery of anticancer drugs with poor membrane permeability and low oral bioavailability.


Assuntos
Doxorrubicina/química , Doxorrubicina/metabolismo , Lisina/química , Polietilenoglicóis/química , Polímeros/química , Tocoferóis/química , Células CACO-2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Micelas
4.
Mol Pharm ; 11(10): 3279-90, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-24754897

RESUMO

Spherical nanoparticles as a classic delivery vehicle for anticancer drugs have been extensively investigated, but study on the shape of nanoparticles has received little attention until now. Here, a nonspherical poly(ethylene glycol) (PEG)-stabilized bilayer nanodisk consisting of 1,2-distearyl-sn-glycero-3-phosphocholine (DSPC) and PEG5000-glyceryl distearate (PEG5K-GCDS) was prepared for doxorubicin delivery, called DOX-Disks. The prepared disks were open bilayer structures, with a hydrophobic discoid center built by DSPC and a hydrophilic PEG edge. Mean particle diameter of the disk was 80.14 nm, and the disk height was about 6 nm with aspect ratio about 12. Encapsulation efficiency of DOX-Disks was as high as 96.1%, and DOX release from DOX-Disks was pH-dependent (25.6% of total DOX released at 24 h in pH 7.4). The pharmacokinetic performances showed that DOX-Disks demonstrated long circulation time in blood and larger AUC (11.7-fold of t1/2 and 31.7-fold of AUC) in rats compared with DOX solutions (DOX-Sol). Tissue distribution in H22 tumor bearing mice demonstrated higher tumor accumulation (9.7-fold) and lower heart toxicities (25.7-fold) at 48 h after iv administration, in comparison with DOX-Sol. In addition, DOX-Disks exhibited much effectiveness in inhibiting tumor cell growth, and the IC50 values were 2.03, 0.85, and 0.86 µg/mL for DOX-Sol and 0.23, 0.24, and 0.20 µg/mL for DOX-Disks after treatment for 48, 72, and 96 h against MCF-7/Adr cells, respectively. DOX-Disks were taken up into MCF-7/Adr cells via energy-dependent endocytosis processes, involved in clathrin-mediated, macropinocytosis-mediated, and non-clathrin- and non-caveolae-mediated endocytosis pathways. In summary, such PEG-stabilized bilayer nanodisks could be one of the promising carriers for antitumor drugs via extended blood circulation and improved tumor distribution.


Assuntos
Antineoplásicos/química , Doxorrubicina/química , Nanopartículas/química , Polietilenoglicóis/química , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Humanos , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Ratos , Ratos Wistar
5.
Drug Deliv ; 23(4): 1272-81, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26965023

RESUMO

There is a strong desire to develop docetaxel (DTX) formulation with good therapeutic effectiveness in view of serious adverse reactions of the commercial formulation of DTX (Taxotere®). In this study, a redox-responsive DTX-vitamin E prodrug was successfully formulated into liposomes with the drug loading of 4.14% ± 0.10%. Compared with DTX liposomes, the DTX prodrug liposomes (DPLs) showed good stability for 30-d shelf life and during dilution with different media. In vitro antitumor activity of DPLs on human prostatic carcinoma PC-3 cells and human lung cancer A549 cells was evaluated using cytotoxicity and apoptosis assays. In spite of a decrease in in vitro antitumor activity, the in vivo pharmacokinetic study reveals that DPLs exhibit significantly longer DTX plasma half-life (t1/2, 1.38-fold) and higher bioavailability (AUC0-t, 14.49-fold) compared with DTX liposomes. The antitumor activity of DPLs to the A549 tumor xenograft model showed selective accumulation in tumor tissue, significant inhibition the growth of the tumors and a much lower toxicity as seen in body weight loss, compared with DTX-Solution. Taken together, the results showed that DPLs is a promising strategy for DTX antitumor delivery.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química , Taxoides/química , Taxoides/farmacologia , Taxoides/farmacocinética , Vitamina E/química , Antineoplásicos/química , Linhagem Celular Tumoral , Docetaxel , Portadores de Fármacos/farmacologia , Humanos , Lipossomos , Neoplasias Pulmonares/química , Vitamina E/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Eur J Pharm Sci ; 66: 96-106, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25446512

RESUMO

A novel X-shaped four-armed gemini-like peglyated distearylglycerol (Gemini-PEG2K-GCDS), with two hydrophilic PEG heads and two hydrophobic stearic acid tails, was successfully synthesized and used as a nanomicellar carrier for delivery of doxorubicin. The critical micelle concentration of the amphiphilic copolymer was higher than 10(-6). Mean particle size and zeta potential of DOX-encapsulated Gemini-PEG2K-GCDS nanomicelles (DOX-GNMs) was 20.4nm and+3.91mv, respectively. Encapsulation efficiency of DOX-GNMs was as high as 94.6 and DOX release was pH-dependent from DOX-GNMs, ensuring the stability of nanomicelles in blood circulation and rapid release of DOX in tumor cells. Pharmacokinetic studies in rats following i.v. administration, DOX-GNMs demonstrated longer retention in blood and larger AUC (19.1-fold of t1/2 and 12.9-fold of AUC) compared with DOX solutions (DOX-Sol). Tissue distribution studies indicate that DOX-GNMs had higher tumor accumulation (4.6-fold) and lower heart toxicity in H22 tumor-bearing mice (17.4-fold) at 48h after administration in comparison with DOX-Sol. Moreover, IC50 of DOX-GNMs increased by 3.3-fold, 2.0-fold and 2.3-fold compared with DOX-Sol in P-gp over-expressing MCF-7/Adr cells after 24h, 48h and 72h, internalized via macropinocytosis-mediated and clathrin-mediated endocytosis. This study suggests that Gemini-PEG2K-GCDS nanomicelle is a promising long circulating delivery system for anti-tumor drugs via extended blood circulation and improved tumor distribution.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacocinética , Doxorrubicina/química , Doxorrubicina/farmacocinética , Glicerídeos/química , Nanoestruturas/química , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Humanos , Células MCF-7 , Masculino , Camundongos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Polietilenoglicóis/química , Ratos , Ratos Wistar , Distribuição Tecidual
7.
J Control Release ; 197: 29-40, 2015 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-25449802

RESUMO

Stealth active targeting nanoparticles (NPs) usually include two types of ligand sites: ligand anchored on distal ends of the polyethylene glycol (PEG) and ligand buried under pegylated layer. The latter typical case is hyaluronic acid (HA)-based NPs; however, there is little information available for the latter NPs about effect of the optimal density of surface PEG coating on the blood circulation time, cellular uptake and in vivo anticancer activity. Thus, in this study, in order to optimize the anticancer effects of HA-based NPs, we focus on how uncovalent pegylation degree modulates blood circulation time and cellular uptake of HA-based NPs. We firstly designed a new double-hydrophilic copolymer by conjugating HP-ß-cyclodextrin with HA, and this carrier was further pegylated with adamantyl-peg (ADA-PEG) to form inclusion complex HA-HPCD/ADA-PEG, termed as HCPs. The supramolecular nanoassemblies were fabricated by host-guest and polar interactions between HCPs and doxorubicin (Dox), with vitamin E succinate (VES) being a nanobridge. Despite the active recognition between HA and CD44 receptor, the cellular uptake and targeting efficiency of HA-NPs decreased with the increasing peg density, demonstrating HA was partly buried by high density peg coating. However, the high density of peg coating was beneficial to long circulation time, tumor biodistribution and anticancer activity in vivo. NPs with 5% peg coating had the optimal cellular targeting efficiency in vitro and anticancer effects in vivo. The findings suggest that balancing long circulation property and cellular uptake is important to achieve the optimal antitumor efficacy for pegylated HA-based NPs, and that PEG coating densities cannot be extended beyond a certain density for shielding effect without compromising the efficacy of hyaluronic acid targeted delivery.


Assuntos
Doxorrubicina , Portadores de Fármacos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico , Nanopartículas , Polietilenoglicóis , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/farmacocinética , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Humanos , Ácido Hialurônico/administração & dosagem , Ácido Hialurônico/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Ratos Sprague-Dawley , Inibidores da Topoisomerase II/administração & dosagem , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacocinética , Carga Tumoral/efeitos dos fármacos , beta-Ciclodextrinas/química
8.
Macromol Biosci ; 14(10): 1415-28, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24948160

RESUMO

A redox-responsive poly(ethylene glycol) (PEG)-sheddable copolymer of disulfide-linked PEG 5000-lysine-di-tocopherol succinate (P(5k)SSLV) is developed which can self-assemble into nanomicelles in aqueous condition and trigger the rapid release of encapsulated drugs within tumor cells. The reduction-insensitive doxorubicin (DOX)-loaded P(5k)LV (P(5k)LV-DOX) nanomicelles are further prepared. Then head-to-head comparison of P(5k)SSLV-DOX, P(5k)LV-DOX and DOX-Sol is performed concerning in vitro release, cytotoxicity, cellular uptake and apoptosis. Results show that P(5k)SSLV-DOX nanomicelles have a faster DOX release, a higher anti-tumor activity and more DOX concentrating in the nucleus than P(5k)LV-DOX nanomicelles. In conclusion, the redox-responsive P(5k)SSLV nanomicelles might hold a great potential to improve chemotherapy by tumor-triggering intracellular rapid release. The outcomes of this study also address the significance of such head-to-head comparison studies in translational research of nanomedicine.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Portadores de Fármacos/síntese química , Nanopartículas/química , Vitamina E/análogos & derivados , Apoptose/efeitos dos fármacos , Transporte Biológico , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Portadores de Fármacos/farmacologia , Composição de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Endossomos/metabolismo , Feminino , Humanos , Cinética , Células MCF-7 , Micelas , Tamanho da Partícula , Polietilenoglicóis/química , Vitamina E/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA