RESUMO
Extracellular matrix (ECM) plays a fundamental role in regulating cell attachment, proliferation, migration and differentiation. Both synthetic and biologically derived materials have been explored as an ECM in regenerative medicine and tissue engineering. To biomimick the extracellular matrix, we combined the advantages of the biological properties of nanofibrous scaffolds and the fusion protein to apply for the culture of human mesenchymal stem cells in vitro. In this study, we fabricated well random-oriented/aligned nanofibrous scaffolds with PCL, modified with hE-cadherin-Fc fusion protein and studied the synergistic effect of the scaffolds. The random-oriented/aligned architecture was observed in the nanofibrous scaffolds by SEM. XPS and WCA measurements evidenced that hE-cadherin-Fc was successfully modified on the PCL nanofibrous scaffolds and hydrophilicity of the scaffolds was well improved after fusion protein coating. The hE-cadherin-Fc modified markedly promoted the adhesion and proliferation of hMSCs and guided hMSCs to a spindlier morphology compared with unmodified nanofibrous scaffolds. Furthermore, hMSCs on the hE-cadherin-Fc-coated nanofibrous scaffolds also had differentiation potential. These results suggested that the combination of PCL nanofibrous scaffolds and hE-cadherin-Fc fusion protein may be a promising artificial ECM for the behavior of hMSCs in vitro.
Assuntos
Caderinas/farmacocinética , Moléculas de Adesão Celular/farmacocinética , Proteínas da Matriz Extracelular/farmacocinética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Poliésteres/química , Alicerces Teciduais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacocinética , Caderinas/química , Caderinas/genética , Adesão Celular/fisiologia , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacocinética , Desenho de Equipamento , Análise de Falha de Equipamento , Proteínas da Matriz Extracelular/química , Humanos , Teste de Materiais , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacocinética , Engenharia Tecidual/instrumentaçãoRESUMO
It was believed for a long time that mRNA is very unstable, and can not be used for therapeutic purposes. In the last decade, however, many research groups proved its transfection feasibility along with advantages and applications. Our investigation is aimed at establishing a potent and efficient mRNA delivery system. We previously reported that an inorganic-organic hybrid carrier by exploiting the advantages of inorganic nano apatite particles onto organic carrier DOTAP {N-[1-(2,3-dioleoloxy)propyl]-N,N,N-trimethyl ammonium chloride} and showed potential effect of carbonate apatite particles on each of the mRNA delivery steps in dividing and non-dividing cell. Here, we report on the development of a more efficient mRNA carrier by complexing ECM protein, fibronectin with the DOTAP-apatite carrier. The carrier showed enhanced uptake of luciferase mRNA both qualitatively and quantitatively. Accelerated cellular endocytosis rate was evaluated using labeled endosome. Finally expression of lucifearse mRNA was higher for fibronectin complexed carrier in compared to the uncoated one.
Assuntos
Portadores de Fármacos , Endocitose , Ácidos Graxos Monoinsaturados , Fibronectinas , Terapia Genética , Compostos de Amônio Quaternário , RNA Mensageiro/administração & dosagem , Transfecção/métodos , Animais , Apatitas , Lipossomos , Luciferases/genética , Mamíferos , RNA Mensageiro/uso terapêuticoRESUMO
To enhance vascularization of hydrophobic implants in vivo, a VEGF-Fc fusion protein consisting of vascular endothelial growth factor (VEGF) fused to the immunoglobulin G Fc domain was prepared as an artificial extracellular matrix (ECM). VEGF-Fc was stably immobilized on a polystyrene plate due to the hydrophobicity of the Fc domain, and significantly enhanced the adhesion of human umbilical vein endothelial cells (HUVECs). Additionally, the use of VEGF-Fc as an ECM markedly promoted the proliferation of HUVECs longer than 72 h and induced the reorganization of actin filaments into larger stress fibers within these cells. The VEGF-Fc fusion protein may be a promising artificial ECM for enhancing endothelial cell growth.
Assuntos
Proliferação de Células , Células Endoteliais/fisiologia , Técnicas de Cultura de Células/métodos , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Poliestirenos/química , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Collective motion of cell sheets plays a role not only in development and repair, but also in devastating diseases such as cancer. However, unlike single-cell motility, collective motion of cell sheets involves complex cell-cell communication during migration; therefore, its mechanism is largely unknown. To elucidate propagation of signaling transduced by cell-cell interaction, we designed a hydrogel substrate that can cause local mechanical stretching of cell sheets. Poly (N-isopropyl acrylamide) (PNIPAAm) hydrogel is a temperature-responsive polymer gel whose volume changes isotropically in response to temperature changes below 37 °C. We designed a combined hydrogel substrate consisting of collagen-immobilized PNIPAAm as the local stimulation side and polyacrylamide (PAAm) as the non-stimulation side to assess propagation of mechanical transduction. Mardin-Darby canine kidney (MDCK) cells adhered to the collagen-immobilized PNIPAAm gel increased it area and were flattened as the gel swelled with temperature decrease. E-cadherin in these cells became undetectable in some domains, and actin stress fibers were more clearly observed at the cell base. In contrast, E-cadherin in cells adhered to the collagen-immobilized PAAm side was equally stained as that in cells adhered to the collagen-immobilized PAAm side even after temperature decrease. ERK1/2 MAPK activation of cells on the non-stimulated substrate occurred after partial stretching of the cell sheet suggesting the propagation of signaling. These results indicate that a change in the balance of mechanical tension induced by partial stretching of cell sheets leads to activation and propagation of the cell signaling.
Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Estresse Mecânico , Resinas Acrílicas/química , Animais , Caderinas/metabolismo , Adesão Celular , Linhagem Celular , Movimento Celular , Forma Celular , Colágeno/química , Cães , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Transdução de Sinais , TemperaturaRESUMO
Hepatic tissue engineering may be an effective approach for the treatment of liver disease; however, its practical application requires hepatic cell separation technologies that do not involve cell surface modification and maintain cell activity. In this study, we developed hepatocyte cell separation materials using a thermoresponsive polymer and a polymer with high affinity to hepatocytes. A block copolymer of poly(N-p-vinylbenzyl-O-ß-D-galactopyranosyl-(1â4)-D-gluconamide) (PVLA) and poly(N-isopropylacrylamide) (PNIPAAm) [PVLA-b-PNIPAAm] was prepared through two steps of atom transfer radical polymerization. On the prepared PVLA-b-PNIPAAm brush, HepG2 cells (model hepatocytes) adhered at 37 °C and detached at 20 °C, attributed to the temperature-modulated affinity between PVLA and HepG2. Cells from the immortalized human hepatic stellate cell line (TWNT-1) did not adhere to the copolymer brush, and RAW264.7 cells (mouse macrophage; model Kupffer cells) adhered to the copolymer brush, regardless of temperature. Using the difference in cell adhesion properties on the copolymer brush, temperature-modulated cell separation was successfully demonstrated. A mixture of HepG2, RAW264.7, and TWNT-1 cells was seeded on the copolymer brush at 37 °C for adherence. By reducing the temperature to 20 °C, adhered HepG2 cells were selectively recovered with a purity of approximately 85% and normal activity. In addition, induced pluripotent stem (iPS) cell-derived hepatocytes adhered on the PVLA-b-PNIPAAm brush at 37 °C and detached from the copolymer brush at 20 °C, whereas the undifferentiated iPS cells did not adhere, indicating that the prepared PVLA-b-PNIPAAm brush could be utilized to separate hepatocyte differentiated and undifferentiated cells. These results indicated that the newly developed PVLA-b-PNIPAAm brush can separate hepatic cells from contaminant cells by temperature modulation, without affecting cell activity or modifying the cell surface. Thus, the copolymer brush is expected to be a useful separation tool for cell therapy and tissue engineering using hepatocytes.
Assuntos
Hepatócitos , Poliestirenos , Camundongos , Animais , Humanos , Temperatura , Poliestirenos/farmacologia , Polímeros/farmacologiaRESUMO
The targeted delivery of anti-inflammatory agents has great therapeutic potential for treating restenosis following percutaneous coronary intervention. To develop a drug delivery system targeted to injured blood vessels, we examined whether N-acetylglucosamine (GlcNAc)-bearing polymer-coated liposomes (GlcNAc-Ls) are specifically taken up by vascular smooth muscle cells (VSMCs). Flow cytometric analysis revealed that GlcNAc-Ls were taken up by VSMCs in vitro. Furthermore, GlcNAc-Ls were intravenously administered to mice that had undergone wire-mediated vascular injury. GlcNAc-Ls markedly accumulated at the intramural site of the injured vessel walls but not at the contralateral (uninjured) vessel walls. These results demonstrated that GlcNAc-Ls can be specifically taken up by VSMCs both in vitro and in vivo. We propose a novel strategy of using GlcNAc-Ls that has potential for application in drug delivery targeted to injured blood vessels.
Assuntos
Acetilglucosamina/farmacocinética , Sistemas de Liberação de Medicamentos , Lipossomos/farmacocinética , Células Musculares/metabolismo , Músculo Liso Vascular/metabolismo , Angioplastia , Animais , Animais Recém-Nascidos , Anti-Inflamatórios/administração & dosagem , Células Cultivadas , Reestenose Coronária/terapia , Injeções Intravenosas , Interleucina-6/metabolismo , NF-kappa B/farmacocinética , Ratos , Ratos Sprague-Dawley , Lesões do Sistema Vascular/tratamento farmacológico , Vimentina/metabolismoRESUMO
Maintenance of the pluripotent state of mesenchymal stem cells (MSCs) during in vitro expansion is an important factor for the successful proliferation of MSCs possessing high differentiation capacity. However, the differentiation potential of MSCs can easily be lost during in vitro expansion, particularly at late passages. Reactive oxygen species (ROS) are signaling molecules that help to maintain MSC function; however, excessive ROS generation can induce senescence and impair both the differentiation capacity and proliferation of MSCs. In this study, we have designed an amphiphilic block copolymer (redox copolymer), which possesses ROS scavenging capacity in the hydrophobic site. When this redox copolymer was coated on cell culture dishes coupled with human E-cadherin chimeric antibody (hE-cad-Fc), it had an antioxidative effect on cultured MSCs. We also confirmed that the redox polymer construct poly(ethylene glycol) tethered chain on the surface prevented nonspecific cell binding, whereas the co-immobilized surface allowed high adhesion of E-cadherin-positive MSCs. Interestingly, the intracellular ROS level was significantly decreased by the prepared cell culture dish, despite ROS being scavenged only on the surface of the dish, on the cell exterior. Consequently, the cultured MSCs retained high expression levels of pluripotency-associated genes, including SOX2.
Assuntos
Antioxidantes/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Adesão Celular/efeitos dos fármacos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismoRESUMO
The suppression of the detachment-induced cell death (anoikis) by the interaction between the cells and extracellular matrix (ECM) is necessary for the application of liver tissue engineering because the disruption of interaction with ECM leads hepatocytes to anoikis. It has been considered, in general, that integrin signal plays an important role in the hepatocyte survival although hepatocytes survive on some types of non-integrin-recognizable matrices, such as poly(N-p-vinylbenzyl-4-O-beta-D-galactopyranosyl-D-gluconamide) (PVLA) and poly-L-lysine (PLL) for several days without the serum. Anoikis was suppressed in the non-adherent culture of hepatocytes isolated from gld/gld mouse, indicating that Fas signal induces hepatocyte anoikis. Fas production is decreased in the adherent culture of hepatocytes on both integrin- and non-integrin-recognizable matrices. Akt activation was hardly observed in the adherent culture of hepatocytes on non-integrin-recognizable matrices whereas the activation occurred in the adherent culture on integrin-recognizable matrices. In the adherent culture of hepatocytes on non-integrin-recognizable matrices, Akt does not contribute to the hepatocyte survival. To prolong the viability of hepatocytes in the adherent culture on PVLA matrix on which hepatocytes maintain their functions for longer period than those on PLL matrix, it might be a good approach to activate Akt signaling pathway.
Assuntos
Hepatócitos/citologia , Hepatócitos/fisiologia , Lactose/análogos & derivados , Polilisina/química , Poliestirenos/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Engenharia Tecidual/métodos , Animais , Anoikis/efeitos dos fármacos , Anoikis/fisiologia , Materiais Biocompatíveis/química , Adesão Celular/fisiologia , Técnicas de Cultura de Células/métodos , Sobrevivência Celular , Células Cultivadas , Matriz Extracelular/química , Integrinas/metabolismo , Lactose/química , Teste de Materiais , CamundongosRESUMO
Understanding hepatocellular signaling occurring in biomaterial systems is important for successful hepatic tissue engineering. Toward this end, we employed synthetic glycopolymers, as artificial matrices, to examine integrin-mediated epidermal growth factor (EGF) signaling in primary hepatocyte cultures. We dispersed hepatocytes on a collagen matrix or on a synthetic glycopolymer matrix and subsequently stimulated them with EGF. Only hepatocytes cultured on collagen proliferated, and we observed significant expression of cyclin B1 in these cells. Pharmacological agents, LY294004 (a phosphatidylinositol [PI] 3-kinase inhibitor) and AG1478 (an EGF kinase receptor inhibitor), blocked hepatocyte proliferation and cyclin B1 expression. In addition, EGF-stimulated hepatocytes formed spheroids, exhibited membrane ruffling, and increased tryptophan 2,3-oxygenase (TO) expression when cultured on glycopolymer matrices. Interestingly, PI 3-kinase inhibition suppressed membrane ruffling, spheroid formation, and TO expression. Taken together, this data suggests PI 3-kinase plays an important role in mediating cross talk between integrin and the EGF signaling pathways in primary hepatocyte cultures.
Assuntos
Diferenciação Celular , Proliferação de Células , Fator de Crescimento Epidérmico/fisiologia , Matriz Extracelular/fisiologia , Hepatócitos/citologia , Transdução de Sinais/fisiologia , Animais , Materiais Biocompatíveis , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos ICRRESUMO
Chitosans have been proposed as biocompatible alternative cationic polymers that are suitable for non-viral delivery. However, the transfection efficiency of chitosan-DNA nanoparticles is still very low. To improve transfection efficiency, we prepared chitosan-graft-polyethylenimine (CHI-g-PEI) copolymer by an imine reaction between periodate-oxidized chitosan and polyethylenimine (PEI). The molecular weight and composition of the CHI-g-PEI copolymer were characterized, using multi-angle laser scattering (GPC-MALS) and (1)H nuclear magnetic resonance ((1)H NMR), respectively. The copolymer was complexed with plasmid DNA (pDNA) in various copolymer/DNA (N/P) charge ratios, and the complex was characterized. CHI-g-PEI showed good DNA binding ability and high protection of DNA from nuclease attack. Also, with an increase in charge ratio, the sizes of the CHI-g-PEI/DNA complex showed a tendency to decrease, whereas the zeta potential of the complex showed an increase. The CHI-g-PEI copolymer had low cytotoxicity, compared to PEI 25K from cytotoxicity assays. At high N/P ratios, the CHI-g-PEI/DNA complex showed higher transfection efficiency than PEI 25K in HeLa, 293T and HepG2 cell lines. Our results indicate that the CHI-g-PEI copolymer has potential as a gene carrier in vitro.
Assuntos
Quitosana/química , Polietilenoimina/química , Transfecção/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quitosana/síntese química , Desoxirribonuclease I/química , Inibidores Enzimáticos/farmacologia , Expressão Gênica/efeitos dos fármacos , Humanos , Luciferases/genética , Luciferases/metabolismo , Macrolídeos/farmacologia , Espectroscopia de Ressonância Magnética , Peso Molecular , Tamanho da Partícula , Plasmídeos/química , Plasmídeos/genética , Polímeros/síntese química , Polímeros/química , Solubilidade , Eletricidade Estática , Propriedades de SuperfícieRESUMO
The development of new three-dimensional (3D) cell culture system that maintains the physiologically relevant signals of hepatocytes is essential in drug discovery and tissue engineering research. Conventional two-dimensional (2D) culture yields cell growth, proliferation, and differentiation. However, gene expression and signaling profiles can be different from in vivo environment. Here, we report the fabrication of a 3D culture system using an artificial scaffold and our custom-made inkjet 3D bioprinter as a new strategy for studying liver-specific functions of hepatocytes. We built a 3D culture platform for hepatocytes-attachment and formation of cell monolayer by interacting the galactose chain of galactosylated alginate gel (GA-gel) with asialoglycoprotein receptor (ASGPR) of hepatocytes. The 3D geometrical arrangement of cells was controlled by using 3D bioprinter, and cell polarity was controlled with the galactosylated hydrogels. The fabricated GA-gel was able to successfully promote adhesion of hepatocytes. To observe liver-specific functions and to mimic hepatic cord, an additional parallel layer of hepatocytes was generated using two gel sheets. These results indicated that GA-gel biomimetic matrices can be used as a 3D culture system that could be effective for the engineering of liver tissues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1583-1592, 2017.
Assuntos
Alginatos/metabolismo , Receptor de Asialoglicoproteína/metabolismo , Materiais Biocompatíveis/metabolismo , Galactose/metabolismo , Hepatócitos/citologia , Impressão Tridimensional , Engenharia Tecidual/instrumentação , Alginatos/química , Animais , Materiais Biocompatíveis/química , Adesão Celular , Células Cultivadas , Desenho de Equipamento , Galactose/análogos & derivados , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Hepatócitos/metabolismo , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo , Camundongos Endogâmicos ICRRESUMO
It is well known that natural extracellular matrix (ECM) molecules are deposited on the surface of biomaterials during culture of cells and affect cellular behaviors. However, it has not been fully understood what kinds of ECM molecules are deposited on the surface of biomaterials although the cellular behaviors were affected by deposited ECM. In this study, to investigate the effect of deposited natural ECM on behaviors of hepatocytes cultured on biomaterials such as poly (N-p-vinylbenzyl-4-O-beta-D-galactopyranosyl-D-gluconamide) (PVLA) as a hepatocyte-specific matrix and poly (L-lysine) (PLL) as a non-specific one during the culture of hepatocytes in vitro, we investigated expression pattern of ECM genes and adsorption of ECM molecules onto PVLA- and PLL-coated surfaces. It was found that the expression levels of type I collagen and fibronectin genes in the hepatocytes cultured on PVLA-coated surface were different from them in the hepatocytes cultured on PLL-coated one. Also, the results showed that laminin was dominantly deposited on PVLA-coated surface whereas fibronectin was dominantly deposited on PLL-coated one. Hepatocytes maintained liver-specific functions on PVLA- and laminin-coated surfaces. It is thought that deposited laminin during the culture of hepatocytes affects the liver-specific functions of hepatocytes cultured on PVLA-coated surface.
Assuntos
Materiais Revestidos Biocompatíveis/química , Dissacarídeos/química , Proteínas da Matriz Extracelular/metabolismo , Hepatócitos/metabolismo , Polilisina/química , Compostos de Vinila/química , Actinas/efeitos dos fármacos , Actinas/metabolismo , Animais , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo I/farmacologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/farmacologia , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Expressão Gênica , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Laminina/genética , Laminina/metabolismo , Laminina/farmacologia , Fígado/citologia , Fígado/fisiologia , Polímeros/química , Propriedades de SuperfícieRESUMO
Formation of primary hepatocyte spheroids in the hydrogel scaffold is a promising approach for enhancing liver-specific functions in liver tissue engineering as well as for developing bioartificial liver (BAL) devices. In the present study, a highly porous hydrogel scaffold composed of alginate (AL) and galactosylated chitosan (GC) as a synthetic extracellular matrix (ECM) for hepatocytes was fabricated with 150-200 microm pore size in diameter. Cell adhesion onto AL/GC and AL/chitosan film was 72.7 and 45% at 1 wt% of GC (or chitosan) to AL content whereas cell adhesion onto AL film was 28.5%. The optimal concentration of GC in AL/GC sponge was 1 wt% to AL content by the measurement of albumin secretion. Cell viabilities performed on AL and AL/GC sponges were 72.2+/-3.6 and 81.3+/-3.5% of control, respectively, after 10 days incubation. Hepatocytes were aggregated to form multicellular spheroids in AL/GC sponge with diameter enlarged up to about 100 microm, 36 h postseeding, whereas most of them in the AL sponge remained as single cells and only a few cells began to form aggregates. Intercellular molecules such as connexin32 and E-cadherin genes related with cell-cell contact were expressed in hepatocytes within AL/GC sponge at 36 h after incubation, but not in AL sponge. Treatment with a gap junctional intercellular communication (GJIC) inhibitor, 18beta-glycyrrhetinic acid, resulted in a 1.5-fold marked decrease in albumin secretion levels in AL/GC sponge. Specially, coculture of hepatocytes in AL and AL/GC sponges with NIH3T3 in a transwell insert resulted in enhanced increase of liver-specific functions, such as albumin secretion rates, ammonia elimination rates, and ethoxyresorufin-O-deethylase activity by cytochrome P4501A1, compared to those in hepatocyte monoculture. The results suggest that formation of hepatocyte spheroids in coculture system enhances liver-specific functions for the AL/GC sponge as a new synthetic ECM to design developed BAL devices.
Assuntos
Alginatos , Materiais Biocompatíveis , Quitosana , Galactose , Hepatócitos/fisiologia , Teste de Materiais , Alginatos/ultraestrutura , Animais , Adesão Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Ácido Glucurônico , Hepatócitos/ultraestrutura , Ácidos Hexurônicos , Testes de Função Hepática , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microscopia de Contraste de Fase , Células NIH 3T3RESUMO
Formation of multicellular hepatocyte spheroids in the three-dimensional culture is a potential approach for enhancing liver-specific functions in bioartificial liver (BAL) devices. In this study, as a synthetic extracellular matrix (ECM) for hepatocytes, a highly porous hydrogel (sponge-like) scaffold, 150-200 microm pore size in diameter, was fabricated with alginate (AL), galactosylated chitosan (GC), and heparin through electrostatic interaction. We attempt to select the best condition of AL/GC/heparin sponges for coculture with NIH3T3, as well as compare the liver-specific functions with monoculture. Cell adhesion to GC based on AL film was significantly increased with increasing GC concentration, but not to chitosan regardless of its concentration. The optimal concentration of GC and heparin in AL/GC/heparin sponges to perform the best liver-specific function was 1 and 6 wt% to AL contents, respectively, where albumin secretion were maintained with maximal rates. The mechanical properties in tensile strength of three types of sponges were very slightly different from one another. Cell viabilities performed on AL, AL/GC, and AL/GC/heparin sponges were 68.5, 83.3, and 90.4 % of control, respectively, after 15 days of incubation. Hepatocyte spheroids were more rapidly formed in the AL/GC and AL/GC/heparin sponges, with diameter enlarged to about 100 microm, than in AL sponges. Connexin32 and E-cadherin genes correlated with cell-to-cell adhesion were expressed in hepatocytes within AL/GC and AL/GC/heparin sponges at 36 h after incubation, but not in AL sponges. Treatment of a gap junctional intercellular communication (GJIC) inhibitor, 18beta-glycyrrhetinic acid, indicates that cell aggregation without GJIC does not perform the liver-specific functions for long periods. In the presence of HGF, the level of albumin secretion in AL/GC/heparin sponges was markedly elevated compared to that in AL/GC sponges. Coculture of hepatocytes in AL/GC/heparin sponges with NIH3T3 in a transwell insert resulted in significant increase of liver-specific functions, such as improved albumin secretion rates, ammonia elimination rates, and ethoxyresorufin-O-deethylase activity by cytochrome P4501A1 compared to those in hepatocyte monoculture. The results suggest that hepatocytes as stable spheroids enhance liver-specific functions in AL/GC/heparin sponges, providing a new synthetic ECM to design BAL devices.
Assuntos
Alginatos/química , Materiais Biocompatíveis/química , Quitosana/química , Matriz Extracelular/química , Galactose/química , Heparina/química , Hepatócitos/citologia , Animais , Adesão Celular , Técnicas de Cultura de Células , Células Cultivadas , Técnicas de Cocultura , Matriz Extracelular/ultraestrutura , Ácido Glucurônico/química , Glicosilação , Hepatócitos/ultraestrutura , Ácidos Hexurônicos/química , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microscopia Eletrônica de Varredura , Células NIH 3T3RESUMO
Human amniotic epithelial (hAE) and mesenchymal (hAM) cells are believed to have the potential to differentiate into various functional cells, such as neurons, hepatocytes, cardiomyocytes, and pancreatic beta cells. However, cell transplantation has been performed by injection of cell suspensions, and thus it is difficult to control shape, size, location, and functions of differentiated cells. To overcome these problems, we developed a novel temperature-responsive culture surface coated with elastic protein-based polymer. By reducing the temperature using a polyvinylidene difluoride (PVDF) membrane, the primary hAE and hAM cell sheet can detach from the coated surface. The recovered cell sheet can be transferred and can re-adhere and re-proliferate on another surface. This represents the first report of harvesting of primary hAE and hAM cell sheets using the novel temperature- responsive polymer. These findings suggest that this new technique of cell sheet detachment from noncytotoxic, highly biocompatible protein-based polymer-coated surfaces may be useful in tissue engineering, as well as in the investigation of hAE and hAM cell sheets for transplantation.
Assuntos
Âmnio/citologia , Polímeros/química , Proteínas/química , Temperatura , Apoptose , Adesão Celular , Técnicas de Cultura de Células , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Humanos , Membranas Artificiais , Polivinil/química , Propriedades de Superfície , Engenharia Tecidual/métodosRESUMO
Antigen-presenting cells (APCs) play a pivotal role in cancer immunotherapy. APCs in conventionally used flasks are harvested by enzymatic digestion or cell scraping for application to cancer immunotherapy. However, these methods may impair functional molecules expressed on the APC surface and reduce their effects in cancer immunotherapy. Recently, we found that APCs could be harvested by shaking at 4°C in flasks coated with poly[N-p-vinylbenzyl-O-2-acetoamide-2-deoxy-ß-D-glucopyranosyl-(1â4)-2-acetoamide-2-deoxy-ß-D-gluconamide] (PVGlcNAc) or a copolymer consisting of sulfonylurea (SU) linked to poly[N-p-vinyl-benzyl-4-O-ß-D-galactopyranosyl-D-gluconamide] [P(VLA-co-SU)]. In the present study, we compared the functions of cytotoxic T-lymphocytes (CTLs) induced by APCs generated in PVGlcNAc- or P(VLA-co-SU)-coated flasks and conventional flasks. APCs from PVGlcNAc- or P(VLA-co-SU)-coated flasks showed higher expression of cluster of differentiation (CD)80/86, CD11c, and major histocompatibility complex class II alloantigen I-A(d), and higher cytotoxicity than APCs from conventional flasks. These results suggest that the use of PVGlcNAc- or P(VLA-co-SU)-coated flasks is optimal for harvesting APCs. The generated APCs also have a higher antigen-presenting ability compared to those generated in conventional flasks. Our results may contribute to the development of effective cancer immunotherapies.
Assuntos
Células Apresentadoras de Antígenos/metabolismo , Separação Celular/métodos , Dissacarídeos/metabolismo , Lactose/análogos & derivados , Teste de Cultura Mista de Linfócitos , Poliestirenos/metabolismo , Linfócitos T Citotóxicos/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Biomarcadores/metabolismo , Antígeno CD11c/metabolismo , Células Cultivadas , Técnicas de Cocultura , Citotoxicidade Imunológica , Antígenos de Histocompatibilidade Classe II/metabolismo , Lactose/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fenótipo , Polivinil/metabolismo , Linfócitos T Citotóxicos/imunologiaRESUMO
Mesenchymal stem cells (MSCs) have emerged as a promising source of multipotent cells for various cell-based therapies due to their unique properties, and formation of 3D MSC aggregates has been explored as a potential strategy to enhance therapeutic efficacy. In this study, poly(lactic-co-glycolic acid) (PLGA) microparticles modified with human E-cadherin fusion protein (hE-cad-PLGA microparticles) have been fabricated and integrated with human MSCs to form 3D cell aggregates. The results show that, compared with the plain PLGA, the hE-cad-PLGA microparticles distribute within the aggregates more evenly and further result in a more significant improvement of cellular proliferation and secretion of a series of bioactive factors due to the synergistic effects from the bioactive E-cadherin fragments and the PLGA microparticles. Meanwhile, the hE-cad-PLGA microparticles incorporated in the aggregates upregulate the phosphorylation of epidermal growth factor receptors and activate the AKT and ERK1/2 signaling pathways in the MSCs. Additionally, the E-cadherin/ß-catenin cellular membrane complex in the MSCs is markedly stimulated by the hE-cad-PLGA microparticles. Therefore, engineering 3D cell aggregates with hE-cad-PLGA microparticles can be a promising method for ex vivo multipotent stem-cell expansion with enhanced biological functions and may offer a novel route to expand multipotent stem-cell-based clinical applications.
Assuntos
Caderinas/química , Ácido Láctico/química , Sistema de Sinalização das MAP Quinases , Células-Tronco Mesenquimais/metabolismo , Ácido Poliglicólico/química , Agregação Celular , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta Catenina/metabolismoRESUMO
Treatment of a physiological disorder in the genetic level (gene therapy) and induction of a specific immunity by means of a genetic material (genetic vaccination), are considered two revolutionary approaches for clinical medicine. The implementation strategies for these basic concepts demand a vehicle for nucleic acid delivery. Viral delivery systems, although highly efficient, possess severe limitations in terms of life safety and thus non-viral synthetic systems have become increasingly desirable. Intensive efforts for the last 3 decades enabled the development of a lot of synthetic devices, most of which belong to cationic lipids, peptides and other polymers, but comparatively little attention was paid to inorganic materials. This is the first article aimed at reviewing the dramatic progress of non-viral gene delivery research focusing on the functional inorganic materials. Both biodegradable and non-biodegradable inorganic particles have been fabricated in the nano-scale with the attributes of binding DNA, internalizing across the plasma membrane and finally releasing it in the cytoplasm for final expression of a protein. Some in vivo trials also brought highly satisfactory results demonstrating their potential applications in the clinical medicine.
Assuntos
Materiais Biocompatíveis/uso terapêutico , Marcação de Genes/métodos , Técnicas de Transferência de Genes , Nanomedicina/métodos , Animais , Apatitas , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Carbono , Membrana Celular/metabolismo , Citoplasma/metabolismo , Humanos , Modelos Biológicos , Nanoestruturas/química , Dióxido de Silício/metabolismo , Dióxido de Silício/uso terapêuticoRESUMO
A series of comb-type copolymers comprised of various polycation backbones and dextran (Dex) side chains were prepared to study the DNA/copolymer interaction. While the cationic copolymers with a lower degree of dextran grafts maintained an ability to condense DNA molecules into a globule form those with a higher degree of dextran grafting interacted with DNA without inducing DNA condensation. The structural differences in cationic backbones diversely influenced DNA hybridization as evaluated by circular dichroism (CD) spectrometry and UV-melting analyses. The copolymer having a polyallylamine (PAA) backbone induced B-->A-type transformation of DNA duplex, whereas the copolymers having either alpha-poly(l-lysine) (alpha PLL) or epsilon-poly(l-lysine) (epsilon PLL) backbone induced B-->C-type transformation. The PAA copolymer is the first example of the artificial polymer that induces B-->A-type transformation under physiologically relevant condition. UV-melting analyses of DNA strands indicated that the alpha PLL copolymers showed the highest stabilization efficacy toward poly(dA).poly(dT) duplex and poly(dA).2poly(dT) triplex without affecting reversibility of inter DNA association. Melting temperatures (T(m)) of the triplex increased from 38 degrees Celsius to 99 degrees Celsius by the addition of the alpha PLL copolymer with an appropriate grafting degree. While the PAA copolymers had higher density of cationic groups along the backbone than alpha PLL copolymers, these copolymers moderately increased T(m) of the DNA triplex. The PAA copolymer caused considerable hysteresis in thermal melting/reassociation processes. Note that the PLL copolymers increased T(m) of the DNA triplex and not the duplex, suggesting their potential as a triplex selective stabilizer. Chemical structures of the cationic backbones of the copolymers were characteristically affected on the copolymer/DNA interaction even if their backbones were surrounded by abundant side chains (> wt%) of dextran. The study suggested that tailor-made design of "functional polycounterion" is a strategy to engineer molecular assembling of DNA.
Assuntos
Sondas de DNA/química , DNA Viral/química , Dextranos/química , Poliaminas/química , Polilisina/química , Sítios de Ligação , DNA Viral/síntese química , Substâncias Macromoleculares/química , Conformação Molecular , Conformação de Ácido Nucleico , Polímeros/química , Relação Estrutura-Atividade , Temperatura de TransiçãoRESUMO
In this study, xyloglucan (XG) was used as a new synthetic extracellular matrix (ECM) for primary mouse hepatocyte attachment in Ca-alginate (AL) capsules. The rates of hepatocytes adhesion onto collagen type I-, XG-coated and uncoated polystyrene (PS) surface were 89.1%, 91.1% and 25.5%, respectively, at 4 h after incubation at 37 degrees C. From the inhibition study in a cell adhesion assay, the adhesion rates of freshly isolated hepatocytes and preincubated hepatocytes with 20 mm galactose onto the XG-coated surface were 55.7 and 17.3%, respectively, after 30 min incubation at 37 degrees C. Flow cytometric analysis showed that the internalization of XG by freshly isolated hepatocytes was stronger than preincubated hepatocytes with 20 mm galactose. The concentration of XG in AL/XG capsules to perform the best liver-specific functions was 0.5 mg/ml, where the highest albumin secretion rates were obtained. The albumin secretion, ammonia elimination rates and cell viability of hepatocytes were slowly decreased with culture time in AL/XG capsules, whereas those were rapidly decreased in AL capsules, indication of the more rapid formation of hepatocyte spheroids in AL/XG capsules than in AL capsules. More than 70% of the seeded hepatocytes in AL/XG capsules participated in spheroid formation after 2 days, whereas most hepatocytes in AL capsules remained as single cells and only a few cells began to form aggregates after 3 days. Intercellular molecule genes, such as connexin (Cx) 32 and E-cadherin, of hepatocyte spheroids in AL or AL/XG capsules were detected by reverse transcriptase-polymerase chain reaction. Cx32 and E-cadherin genes in AL/XG capsules were more rapidly reexpressed and expressed, respectively, than in AL ones. The results suggest that the multicellular spheroid formation of hepatocytes can enhance the liver-specific functions in the three-dimensional space in the presence of XG as a new synthetic ECM owing to the specific interaction between the galactose moieties of XG and asialoglycoprotein receptors of hepatocytes.