Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
AAPS PharmSciTech ; 25(5): 95, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710921

RESUMO

Verapamil hydrochloride (VRP), an antihypertensive calcium channel blocker drug has limited bioavailability and short half-life when taken orally. The present study was aimed at developing cubosomes containing VRP for enhancing its bioavailability and targeting to brain for cluster headache (CH) treatment as an off-label use. Factorial design was conducted to analyze the impact of different components on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and percent drug release. Various in-vitro characterizations were performed followed by pharmacokinetic and brain targeting studies. The results revealed the significant impact of glyceryl monooleate (GMO) on increasing EE%, PS, and ZP of cubosomes with a negative influence on VRP release. The remarkable effect of Poloxamer 407 (P407) on decreasing EE%, PS, and ZP of cubosomes was observed besides its influence on accelerating VRP release%. The DSC thermograms indicated the successful entrapment of the amorphous state of VRP inside the cubosomes. The design suggested an optimized formulation containing GMO (50% w/w) and P407 (5.5% w/w). Such formulation showed a significant increase in drug permeation through nasal mucosa with high Er value (2.26) when compared to VRP solution. Also, the histopathological study revealed the safety of the utilized components used in the cubosomes preparation. There was a significant enhancement in the VRP bioavailability when loaded in cubosomes owing to its sustained release favored by its direct transport to brain. The I.N optimized formulation had greater BTE% and DTP% at 183.53% and 90.19%, respectively in comparison of 41.80% and 59% for the I.N VRP solution.


Assuntos
Administração Intranasal , Encéfalo , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Glicerídeos , Mucosa Nasal , Tamanho da Partícula , Verapamil , Administração Intranasal/métodos , Animais , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Verapamil/administração & dosagem , Verapamil/farmacocinética , Distribuição Tecidual , Glicerídeos/química , Mucosa Nasal/metabolismo , Disponibilidade Biológica , Ratos , Bloqueadores dos Canais de Cálcio/farmacocinética , Bloqueadores dos Canais de Cálcio/administração & dosagem , Poloxâmero/química , Masculino , Química Farmacêutica/métodos , Ratos Wistar , Nanopartículas/química
2.
BMC Genomics ; 22(1): 312, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33926374

RESUMO

BACKGROUND: Salvadora persica L. (Toothbrush tree - Miswak; family-Salvadoraceae) grows in the arid-land ecosystem and possesses economic and medicinal importance. The species, genus and the family have no genomic datasets available specifically on chloroplast (cp) genomics and taxonomic evolution. Herein, we have sequenced the complete chloroplast genome of S. persica for the first time and compared it with 11 related specie's cp genomes from the order Brassicales. RESULTS: The S. persica cp genome was 153,379 bp in length containing a sizeable single-copy region (LSC) of 83,818 bp which separated from the small single-copy region (SSC) of 17,683 bp by two inverted repeats (IRs) each 25,939 bp. Among these genomes, the largest cp genome size (160,600 bp) was found in M. oleifera, while in S. persica it was the smallest (153,379 bp). The cp genome of S. persica encoded 131 genes, including 37 tRNA genes, eight rRNA genes and 86 protein-coding genes. Besides, S. persica contains 27 forward, 36 tandem and 19 palindromic repeats. The S. persica cp genome had 154 SSRs with the highest number in the LSC region. Complete cp genome comparisons showed an overall high degree of sequence resemblance between S. persica and related cp genomes. Some divergence was observed in the intergenic spaces of other species. Phylogenomic analyses of 60 shared genes indicated that S. persica formed a single clade with A. tetracantha with high bootstrap values. The family Salvadoraceae is closely related to Capparaceae and Petadiplandraceae rather than to Bataceae and Koberliniacaea. CONCLUSION: The current genomic datasets provide pivotal genetic resources to determine the phylogenetic relationships, genome evolution and future genetic diversity-related studies of S. persica in complex angiosperm families.


Assuntos
Genoma de Cloroplastos , Salvadoraceae , Ecossistema , Evolução Molecular , Humanos , Repetições de Microssatélites , Filogenia
3.
Drug Dev Ind Pharm ; 47(7): 1112-1120, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34551665

RESUMO

OBJECTIVE: The aim of the current investigation was to develop poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) to sustain the brigatinib (BTB) release for prolong time period and to examine the antitumor effect of the optimized NPs. SIGNIFICANCE: Optimized PLGA-based NPs of BTB could be potentially used as a promising nanocarrier for the treatment of non-small cell lung cancer. METHODS: BTB-loaded NPs were fabricated with core-shell of PLGA by solvent evaporation technique using different proportions of PLGA polymer and poly-vinyl alcohol (PVA) stabilizer. The prepared NPs were evaluated for particle characterizations; size, polydispersity index (PDI), zeta-potential, entrapment efficiency (EE), and drug loading (DL), Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction studies. The optimized NPs (BN5) were further evaluated for morphology, stability, and cytotoxicity studies against A549 cell-lines. RESULTS: Among the nine different NPs formulae (BN1-BN9), BN5 was optimized with composition of BTB (30 mg), PLGA (75 mg), PVA (0.55% w/v), represents an average particle size of (267.1 ± 1.01 nm), PDI (0.101 ± 0.007), and zeta potential (-42.1 ± 0.75 mV), high EE (66.83 ± 0.06%), and DL (6.17 ± 0.69%). SEM image of selected NPs was spherical with smooth surface. In vitro drug release profile in phosphate buffers (pH 5 and pH 7.4) showed a biphasic release with initial burst phase followed by sustained release for prolong time. Furthermore, optimized NPs (BN5) exhibited excellent cytotoxic activity against A549 cell-lines with IC50 value of 5.25 ± 0.23 µg/mL. CONCLUSION: The overall results suggest that BTB-loaded PLGA NPs could be a potential nanocarrier for lung cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Portadores de Fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Compostos Organofosforados , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Pirimidinas
4.
Int J Biol Macromol ; 271(Pt 1): 132354, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750852

RESUMO

The utilization of biopolymer-based food packaging holds significant promise in aligning with sustainability goals and enhancing food safety by offering a renewable, biodegradable, and safer alternative to traditional synthetic polymers. However, these biopolymer-derived films often exhibit poor barrier and mechanical properties, potentially limiting their commercial viability. Desirable barrier properties, such as moisture and oxygen resistance, are critical for preserving and maintaining the quality of packaged food products. This review comprehensively explores different traditional and advance methodologies employed to access the barrier properties of edible films. Additionally, this review thoroughly examines various approaches aimed at enhancing the barrier properties of edible films, such as the fabrication of multilayer films, the selection of biopolymers for composite films, as well as the integration of plasticizers, crosslinkers, hydrophobic agents, and nanocomposites. Moreover, the influence of process conditions, such as preparation techniques, homogenization, drying conditions, and rheological behavior, on the barrier properties of edible films has been discussed. The review provides valuable insights and knowledge for researchers and industry professionals to advance the use of biopolymer-based packaging materials and contribute to a more sustainable and food-safe future.


Assuntos
Filmes Comestíveis , Embalagem de Alimentos , Embalagem de Alimentos/métodos , Biopolímeros/química , Nanocompostos/química , Permeabilidade , Plastificantes/química
5.
Environ Sci Pollut Res Int ; 29(49): 73809-73827, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36100788

RESUMO

Neurodegeneration is the loss of neuronal capacity and structure over time which causes neurodegenerative disorders like Alzheimer, amyotrophic lateral sclerosis, Parkinson, and Huntington's disease (HD). This review is primarily concerned with HD, which was fully described by George Huntington in 1872. In developed countries, HD has become another common single-gene neurological disorder. Because of its autosomal dominant inheritance, the sickness affects both individuals and their families. Huntington disease has been recognized as a disorder that affects the complete body and brain in which the mutant huntingtin polyglutamine (polyQ) sequence is extensively increased and gets correlated to CAG trinucleotide which codes for glutamine (Q). These proteins have characteristics that produce apoptosis and dysfunction. HD is a lethal condition which needs an immediate diagnosis and treatment, and therefore, nanoparticle has come into sight out as opportunistic strategies for treatment of HD. Nanostructures have great potential to cross the blood brain barrier and also prevent breakdown of active molecule and reduces the drug toxicity. This review explains the distinguishing symptoms, genetics, and stages during the development of Huntington's disease, and also provides an overview of HD with an emphasis on its epidemiology, pathogenesis, and management. This review focuses on the latest studies on nanotechnology-related technologies, i.e., magnetic nanoparticle, solid lipid nanoparticle, and polymeric nanoparticle for Huntington's disease treatment. The pioneering patents and in-progress clinical trials related to Huntington's disease has also been summarized in this review.


Assuntos
Doença de Huntington , Glutamina , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Lipossomos , Nanopartículas , Nanotecnologia
6.
Environ Sci Pollut Res Int ; 29(18): 27460-27478, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34981370

RESUMO

Migraine which is characterized by a pulsating headache affected an estimated population of 12% worldwide. Herbal products like latex derived from Calotropis gigantea R. Br. (Asclepiadaceae) are a representative intervention to treat migraine traditionally. However, post-harvesting stability issues of latex affect its biological potential. Freeze-drying has been successfully employed for the encapsulation of herbal bioactive compounds resulting in stable dried preparations. Latex derived from Calotropis gigantea (C. gigantea) was microencapsulated using chitosan by freeze-drying (FDCG) method and compared with sun ray-dried latex (ADCG). Current investigation was aimed to improve the shelf life of latex by freeze-drying microencapsulation technique and evaluation of its anti-migraine potential. Dried latex powders (ADCG and FDCG) were evaluated in terms of phenolic content, coloring strength, first-order kinetic, color parameters (L*, a*, b*, C*, and E*), moisture, water activity, solubility, and hygroscopicity. Additionally, apomorphine-induced climbing behavior, L-5-HTP-induced syndrome, and MK-801-induced hyperactivity were used to evaluate the anti-migraine potential of powdered latex. FDCG showed good physicochemical properties due to its higher concentration of phenolic and flavonoid contents. Moreover, FDCG significantly reduced the apomorphine-induced climbing behavior, L-5-HTP-induced syndrome, and MK-801-induced hyperactivity in a dose-dependent manner through an interaction of dopaminergic and serotonergic receptors. In conclusion, the method developed for shelf life improvement of latex offered maximum protection over a period of 10 weeks with retaining its natural biological potential; thus, it can be effectively utilized in the treatment or management of migraine. Anti-migraine effect of Calotropis gigantea freeze-dried latex by inhibition of dopamine and serotonin receptors (D1 and D2: dopamine receptors; 5-HT: serotonin receptors); yellow color represents serotonergic, and blue color indicates dopaminergic neurons.


Assuntos
Calotropis , Transtornos de Enxaqueca , 5-Hidroxitriptofano , Apomorfina , Calotropis/química , Maleato de Dizocilpina , Látex/química , Fenóis , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Pós
7.
Artif Cells Nanomed Biotechnol ; 49(1): 194-203, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33629627

RESUMO

This study deals with facile and rapid synthesis of silver nanoparticles (AgNPs) and Gold nanoparticles (AuNPs) using Mentha longifolia leaves extracts (MLE). The synthesized AgNPs and AuNPs were characterized by UV-visible spectroscopy (UV-Vis), Fourier transformed infra-red spectroscopy (FT-IR), atomic force microscopy (AFM) and transmission electron microscopy (TEM) techniques. The phytochemical analysis showed the presence of bioactive secondary metabolites, which are involved in the synthesis of nanoparticles (NPs). The surface plasmon resonance (SPR) observed at 435 and 550 nm, confirmed the green synthesis of AgNPs and AuNPs, respectively. The TEM images showed poly dispersed and round oval shapes of Ag and Au NPs with an average particles size of 10.23 ± 2 nm and 13.45 ± 2 nm, respectively. TEM results are in close agreements with that of AFM analysis. The FT-IR spectroscopy revealed the presence of OH, -NH2 and C = O groups, which involved in the synthesis of NPs. The MLE and their AgNPs and AuNP exhibited good in vitro antibacterial and anti-oxidant activities. Moreover, MLE and NPs also showed in vivo analgesic activities in mice, and excellent sedative properties in open field test paradigm.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Mentha/química , Nanopartículas Metálicas/química , Methanomicrobiaceae/química , Extratos Vegetais/química , Prata/química , Animais , Materiais Biocompatíveis/síntese química , Técnicas de Química Sintética , Ouro , Química Verde , Camundongos
8.
Biotechnol Prog ; 36(3): e2963, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31943942

RESUMO

To overcome the biofouling challenge which faces membrane water treatment processed, the novel superhydrophobic carbon nanomaterials impregnated on/powder activated carbon (CNMs/PAC) was utilized to successfully design prepare an antimicrobial membrane. The research was conducted following a systematic statistical design of experiments technique considering various parameters of composite membrane fabrication. The impact of these parameters of composite membrane on Staphylococcus aureus growth was investigated. The bacteria growth was analyzed through spectrophotometer and SEM. The effect of CNMs' hydrophobicity on the bacterial colonies revealed a decrease in the abundance of bacterial colonies and an alteration in structure with increasing the hydrophobicity. The results revealed that the optimum preparative conditions for carbon loading CNMs/PAC was 363.04 mg with a polymer concentration of 22.64 g/100 g, and a casting knife thickness of 133.91 µm. These conditions have resulted in decreasing the number of bacteria colonies to about 7.56 CFU. Our results provided a strong evidence on the antibacterial effect and consequently on the antibiofouling potential of CNMs/PAC in membrane.


Assuntos
Antibacterianos/química , Carbono/química , Membranas Artificiais , Nanoestruturas/química , Antibacterianos/farmacologia , Incrustação Biológica , Carbono/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA