Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 23(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35682749

RESUMO

Microbial conversion of biomass relies on a complex combination of enzyme systems promoting synergy to overcome biomass recalcitrance. Some thermophilic bacteria have been shown to exhibit particularly high levels of cellulolytic activity, making them of particular interest for biomass conversion. These bacteria use varying combinations of CAZymes that vary in complexity from a single catalytic domain to large multi-modular and multi-functional architectures to deconstruct biomass. Since the discovery of CelA from Caldicellulosiruptor bescii which was identified as one of the most active cellulase so far identified, the search for efficient multi-modular and multi-functional CAZymes has intensified. One of these candidates, GuxA (previously Acel_0615), was recently shown to exhibit synergy with other CAZymes in C. bescii, leading to a dramatic increase in growth on biomass when expressed in this host. GuxA is a multi-modular and multi-functional enzyme from Acidothermus cellulolyticus whose catalytic domains include a xylanase/endoglucanase GH12 and an exoglucanase GH6, representing a unique combination of these two glycoside hydrolase families in a single CAZyme. These attributes make GuxA of particular interest as a potential candidate for thermophilic industrial enzyme preparations. Here, we present a more complete characterization of GuxA to understand the mechanism of its activity and substrate specificity. In addition, we demonstrate that GuxA exhibits high levels of synergism with E1, a companion endoglucanase from A. cellulolyticus. We also present a crystal structure of one of the GuxA domains and dissect the structural features that might contribute to its thermotolerance.


Assuntos
Actinobacteria , Actinomycetales , Celulase , Biomassa , Celulase/química , Celulose/química , Humanos
2.
Appl Environ Microbiol ; 85(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478233

RESUMO

Genomes of extremely thermophilic Caldicellulosiruptor species encode novel cellulose binding proteins, called tapirins, located proximate to the type IV pilus locus. The C-terminal domain of Caldicellulosiruptor kronotskyensis tapirin 0844 (Calkro_0844) is structurally unique and has a cellulose binding affinity akin to that seen with family 3 carbohydrate binding modules (CBM3s). Here, full-length and C-terminal versions of tapirins from Caldicellulosiruptor bescii (Athe_1870), Caldicellulosiruptor hydrothermalis (Calhy_0908), Caldicellulosiruptor kristjanssonii (Calkr_0826), and Caldicellulosiruptor naganoensis (NA10_0869) were produced recombinantly in Escherichia coli and compared to Calkro_0844. All five tapirins bound to microcrystalline cellulose, switchgrass, poplar, and filter paper but not to xylan. Densitometry analysis of bound protein fractions visualized by SDS-PAGE revealed that Calhy_0908 and Calkr_0826 (from weakly cellulolytic species) associated with the cellulose substrates to a greater extent than Athe_1870, Calkro_0844, and NA10_0869 (from strongly cellulolytic species). Perhaps this relates to their specific needs to capture glucans released from lignocellulose by cellulases produced in Caldicellulosiruptor communities. Calkro_0844 and NA10_0869 share a higher degree of amino acid sequence identity (>80% identity) with each other than either does with Athe_1870 (∼50%). The levels of amino acid sequence identity of Calhy_0908 and Calkr_0826 to Calkro_0844 were only 16% and 36%, respectively, although the three-dimensional structures of their C-terminal binding regions were closely related. Unlike the parent strain, C. bescii mutants lacking the tapirin genes did not bind to cellulose following short-term incubation, suggesting a role in cell association with plant biomass. Given the scarcity of carbohydrates in neutral terrestrial hot springs, tapirins likely help scavenge carbohydrates from lignocellulose to support growth and survival of Caldicellulosiruptor species.IMPORTANCE The mechanisms by which microorganisms attach to and degrade lignocellulose are important to understand if effective approaches for conversion of plant biomass into fuels and chemicals are to be developed. Caldicellulosiruptor species grow on carbohydrates from lignocellulose at elevated temperatures and have biotechnological significance for that reason. Novel cellulose binding proteins, called tapirins, are involved in the way that Caldicellulosiruptor species interact with microcrystalline cellulose, and additional information about the diversity of these proteins across the genus, including binding affinity and three-dimensional structural comparisons, is provided here.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Celulose/metabolismo , Firmicutes/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Celulose/química , Firmicutes/química , Firmicutes/genética , Genoma Bacteriano , Fontes Termais/microbiologia , Temperatura Alta , Domínios Proteicos
3.
J Biol Chem ; 290(17): 10645-56, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25720489

RESUMO

A variety of catalytic and noncatalytic protein domains are deployed by select microorganisms to deconstruct lignocellulose. These extracellular proteins are used to attach to, modify, and hydrolyze the complex polysaccharides present in plant cell walls. Cellulolytic enzymes, often containing carbohydrate-binding modules, are key to this process; however, these enzymes are not solely responsible for attachment. Few mechanisms of attachment have been discovered among bacteria that do not form large polypeptide structures, called cellulosomes, to deconstruct biomass. In this study, bioinformatics and proteomics analyses identified unique, discrete, hypothetical proteins ("tapirins," origin from Maori: to join), not directly associated with cellulases, that mediate attachment to cellulose by species in the noncellulosomal, extremely thermophilic bacterial genus Caldicellulosiruptor. Two tapirin genes are located directly downstream of a type IV pilus operon in strongly cellulolytic members of the genus, whereas homologs are absent from the weakly cellulolytic Caldicellulosiruptor species. Based on their amino acid sequence, tapirins are specific to these extreme thermophiles. Tapirins are also unusual in that they share no detectable protein domain signatures with known polysaccharide-binding proteins. Adsorption isotherm and trans vivo analyses demonstrated the carbohydrate-binding module-like affinity of the tapirins for cellulose. Crystallization of a cellulose-binding truncation from one tapirin indicated that these proteins form a long ß-helix core with a shielded hydrophobic face. Furthermore, they are structurally unique and define a new class of polysaccharide adhesins. Strongly cellulolytic Caldicellulosiruptor species employ tapirins to complement substrate-binding proteins from the ATP-binding cassette transporters and multidomain extracellular and S-layer-associated glycoside hydrolases to process the carbohydrate content of lignocellulose.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Celulose/metabolismo , Adsorção , Bactérias/genética , Bactérias/ultraestrutura , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/genética , Sítios de Ligação , Fímbrias Bacterianas/metabolismo , Genes Bacterianos , Modelos Moleculares , Filogenia , Plantas/microbiologia , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
J Biol Chem ; 287(49): 41068-77, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23055526

RESUMO

Currently, the cost of cellulase enzymes remains a key economic impediment to commercialization of biofuels. Enzymes from glycoside hydrolase family 48 (GH48) are a critical component of numerous natural lignocellulose-degrading systems. Although computational mining of large genomic data sets is a promising new approach for identifying novel cellulolytic activities, current computational methods are unable to distinguish between cellulases and enzymes with different substrate specificities that belong to the same protein family. We show that by using a robust computational approach supported by experimental studies, cellulases and non-cellulases can be effectively identified within a given protein family. Phylogenetic analysis of GH48 showed non-monophyletic distribution, an indication of horizontal gene transfer. Enzymatic function of GH48 proteins coded by horizontally transferred genes was verified experimentally, which confirmed that these proteins are cellulases. Computational and structural studies of GH48 enzymes identified structural elements that define cellulases and can be used to computationally distinguish them from non-cellulases. We propose that the structural element that can be used for in silico discrimination between cellulases and non-cellulases belonging to GH48 is an ω-loop located on the surface of the molecule and characterized by highly conserved rare amino acids. These markers were used to screen metagenomics data for "true" cellulases.


Assuntos
Celulase/química , Glicosídeo Hidrolases/química , Celulose/química , Dicroísmo Circular , Clonagem Molecular , Clostridium/enzimologia , Biologia Computacional/métodos , Sequência Conservada , Evolução Molecular , Transferência Genética Horizontal , Genômica , Modelos Genéticos , Filogenia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Software
5.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 3): 292-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22349231

RESUMO

The efficient deconstruction of lignocellulosic biomass remains a significant barrier to the commercialization of biofuels. Whereas most commercial plant cell-wall-degrading enzyme preparations used today are derived from fungi, the cellulosomal enzyme system from Clostridium thermocellum is an equally effective catalyst, yet of considerably different structure. A key difference between fungal enzyme systems and cellulosomal enzyme systems is that cellulosomal enzyme systems utilize self-assembled scaffolded multimodule enzymes to deconstruct biomass. Here, the possible function of the X1 modules in the complex multimodular enzyme system cellobiohydrolase A (CbhA) from C. thermocellum is explored. The crystal structures of the two X1 modules from C. thermocellum CbhA have been solved individually and together as one construct. The role that calcium may play in the stability of the X1 modules has also been investigated, as well as the possibility that they interact with each other. Furthermore, the results show that whereas the X1 modules do not seem to act as cellulose disruptors, they do aid in the thermostability of the CbhA complex, effectively allowing it to deconstruct cellulose at a higher temperature.


Assuntos
Celulose 1,4-beta-Celobiosidase/química , Celulose/química , Celulossomas/enzimologia , Clostridium thermocellum/enzimologia , Complexos Multienzimáticos/química , Sítios de Ligação , Biomassa , Celulose 1,4-beta-Celobiosidase/metabolismo , Cristalografia por Raios X , Estrutura Terciária de Proteína
6.
PLoS One ; 9(12): e111443, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25462572

RESUMO

To develop a direct microbial sugar conversion platform for the production of lipids, drop-in fuels and chemicals from cellulosic biomass substrate, we chose Yarrowia lipolytica as a viable demonstration strain. Y. lipolytica is known to accumulate lipids intracellularly and is capable of metabolizing sugars to produce lipids; however, it lacks the lignocellulose-degrading enzymes needed to break down biomass directly. While research is continuing on the development of a Y. lipolytica strain able to degrade cellulose, in this study, we present successful expression of several xylanases in Y. lipolytica. The XynII and XlnD expressing Yarrowia strains exhibited an ability to grow on xylan mineral plates. This was shown by Congo Red staining of halo zones on xylan mineral plates. Enzymatic activity tests further demonstrated active expression of XynII and XlnD in Y. lipolytica. Furthermore, synergistic action in converting xylan to xylose was observed when XlnD acted in concert with XynII. The successful expression of these xylanases in Yarrowia further advances us toward our goal to develop a direct microbial conversion process using this organism.


Assuntos
Endo-1,4-beta-Xilanases/biossíntese , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Yarrowia/enzimologia , Biomassa , Celulose/química , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Perfilação da Expressão Gênica , Microbiologia Industrial , Lignina/química , Espectrometria de Massas , Regiões Promotoras Genéticas , Proteínas Recombinantes/biossíntese , Xilanos/química , Xilose/química , Zea mays/química
7.
Science ; 344(6184): 578, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24812382

RESUMO

Gusakov critiques our methodology for comparing the cellulolytic activity of the bacterial cellulase CelA with the fungal cellulase Cel7A. We address his concerns by clarifying some misconceptions, carefully referencing the literature, and justifying our approach to point out that the results from our study still stand.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Celulase/química , Celulose/química
8.
Science ; 342(6165): 1513-6, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24357319

RESUMO

Most fungi and bacteria degrade plant cell walls by secreting free, complementary enzymes that hydrolyze cellulose; however, some bacteria use large enzymatic assemblies called cellulosomes, which recruit complementary enzymes to protein scaffolds. The thermophilic bacterium Caldicellulosiruptor bescii uses an intermediate strategy, secreting many free cellulases that contain multiple catalytic domains. One of these, CelA, comprises a glycoside hydrolase family 9 and a family 48 catalytic domain, as well as three type III cellulose-binding modules. In the saccharification of a common cellulose standard, Avicel, CelA outperforms mixtures of commercially relevant exo- and endoglucanases. From transmission electron microscopy studies of cellulose after incubation with CelA, we report morphological features that suggest that CelA not only exploits the common surface ablation mechanism driven by general cellulase processivity, but also excavates extensive cavities into the surface of the substrate. These results suggest that nature's repertoire of cellulose digestion paradigms remain only partially discovered and understood.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Celulase/química , Celulose/química , Proteínas de Bactérias/isolamento & purificação , Catálise , Domínio Catalítico , Celulase/isolamento & purificação , Temperatura Alta , Hidrólise , Especificidade por Substrato
9.
J Mol Biol ; 402(2): 374-87, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20654622

RESUMO

The crystal structure of the carbohydrate-binding module (CBM) 4 Ig fused domain from the cellulosomal cellulase cellobiohydrolase A (CbhA) of Clostridium thermocellum was solved in complex with cellobiose at 2.11 A resolution. This is the first cellulosomal CBM4 crystal structure reported to date. It is similar to the previously solved noncellulosomal soluble oligosaccharide-binding CBM4 structures. However, this new structure possesses a significant feature-a binding site peptide loop with a tryptophan (Trp118) residing midway in the loop. Based on sequence alignment, this structural feature might be common to all cellulosomal clostridial CBM4 modules. Our results indicate that C. thermocellum CbhA CBM4 also has an extended binding pocket that can optimally bind to cellodextrins containing five or more sugar units. Molecular dynamics simulations and experimental binding studies with the Trp118Ala mutant suggest that Trp118 contributes to the binding and, possibly, the orientation of the module to soluble cellodextrins. Furthermore, the binding cleft aromatic residues Trp68 and Tyr110 play a crucial role in binding to bacterial microcrystalline cellulose (BMCC), amorphous cellulose, and soluble oligodextrins. Binding to BMCC is in disagreement with the structural features of the binding pocket, which does not support binding to the flat surface of crystalline cellulose, suggesting that CBM4 binds the amorphous part or the cellulose "whiskers" of BMCC. We propose that clostridial CBM4s have possibly evolved to bind the free-chain ends of crystalline cellulose in addition to their ability to bind soluble cellodextrins.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Celobiose/química , Celobiose/metabolismo , Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/metabolismo , Clostridium thermocellum/enzimologia , Substituição de Aminoácidos/genética , Sítios de Ligação , Celulose/análogos & derivados , Celulose/metabolismo , Cristalografia por Raios X , Dextrinas/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA