RESUMO
Objective: Evaluation of contemporary disinfection techniques, Moringa Oleifera (M.Oleifera), Phycocyanin activated by photodynamic therapy (PDT), and Chitosan, on S.mutans survival rate and bond integrity of composite to carious-affected dentin (CAD). Methods: The in vitro study was conducted at King Saud University and concluded within three months. Sixty mandibular teeth with cavities extending to the middle third of the dentin were sterilized. S.mutans was inoculated onto the CAD surface of twenty samples. The samples were randomly divided into four groups (n: 15) based on various disinfection regimes. Group-1 received 2% CHX, Group-2 Phycocyanin activated by photodynamic therapy (PDT), Group-3 Chitosan, and Group-4 M.oleifera. S.mutans survival rate was calculated. Ten CAD samples from each group were restored using composite. The bond integrity of samples was assessed using a Universal testing machine (UTM) and failure mode using a stereomicroscope. Analysis of variance (ANOVA) and Tukey's Post Hoc test were used to calculate statistical significance (p=0.05). Results: Group-2 samples subjected to Phycocyanin activated using PDT, displayed minimal survival rate (0.24 ± 0.05 CFU/ml) of S.mutans.Group-1 samples treated with CHX exhibited the highest count of S.mutans (0.69 ± 0.12 CFU/ml). The most robust bond was observed in Group-3 (Chitosan) samples (19.33 ± 0.47 MPa). In contrast, SBS values were lowest in Group-1 (CHX) treated study samples (13.17 ± 1.88 MPa). Conclusion: Chitosan, Phycocyanin activated by PDT, and Moringa Oleifera extract exhibit potential as viable substitutes for chlorhexidine (CHX) in clinical settings, presenting the possibility of better eradication of S.mutans and greater adhesive strength to CAD.
RESUMO
Herein we report synthesis of hematite (α-Fe2O3) nanorods by calcinating hydrothermally synthesized goethite nanorods at 5000C. The structural, optical and MRI imaging guided cancer therapeutic properties of fabricated nanorods have been discussed in this manscript. FESEM and TEM imaging techniques were used to confirm the nanorod like morphology of as prepared materials. As we know that Fe2O3 nanorods with size in the range of 25-30 nm exhibit super magnetism. After coating with the PEG, the as prepared nanorods can be used as T2 MR imaging contrast agents. An excellent T2 MRI contrast of 38.763 mM-1s-1 achieved which is highest reported so far for α-Fe2O3. Besides the as prepared nanorods display an excellent photothermal conversion efficiency of 39.5% thus acts as an excellent photothermal therapeutic agent. Thus, we envision the idea of testing our nanorods for photothermal therapy and MR imaging application both in vitro and in vivo, achieving an excellent T2 MRI contrast and photothermal therapy effect with as prepared PEGylated nanorods.
Assuntos
Compostos Férricos/química , Nanotubos/química , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Sobrevivência Celular , Feminino , Compostos Férricos/toxicidade , Células HeLa , Humanos , Técnicas In Vitro , Imageamento por Ressonância Magnética , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Microscopia Eletrônica de Varredura , Nanotubos/toxicidade , Nanotubos/ultraestrutura , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Fototerapia/métodos , Polietilenoglicóis/química , Análise Espectral Raman , Difração de Raios XRESUMO
Assessment of the antimicrobial, micro tensile bond strength (µTBS), and degree of conversion (DC) of fifth-generation adhesive modified using photoactivated 0.5% rose bengal (RB) and photoactivated RB-doped titanium dioxide nanoparticles (TiO2NPs) in different concentrations (2% and 5%) as compared with the unmodified adhesive bonded to the carious affected dentin (CAD). Forty mandibular molars with caries progression up to the middle third of the dentin, as per the International Caries Detection and Assessment System (ICDAS) score of 4 and 5 were included. Specimens were divided into four groups based on etch and rinse adhesive (ERA) modification group 1: unmodified ERA, group 2: photoactivated 0.5% RB photosensitizer (PS) modified ERA, group 3: photoactivated RB-doped 2 wt% TiO2NPs adhesive, group 4: photoactivated RB-doped 5 wt% TiO2NPs adhesive. Followed by adhesive and composite restoration on the CAD surface. All the specimens were thermocycled and an assessment of µTBS and failure pattern analysis was performed. The antibacterial potency of RB and RB-doped TiO2NPs (2% and 5%) followed by their activation using visible light against Streptococcus mutans (S.mutans) were tested. The survival rate of S.mutans was assessed using the Kruskal-Wallis test. The analysis of µTBS involved the use of ANOVA, followed by a post-hoc Tukey honestly significant difference (HSD) multiple comparisons test. Group 1 (Unmodified ERA) (0.52 ± 0.31 CFU/mL) treated samples unveiled the highest means of bacterial survival and lowest µTBS (11.32 ± 0.63 MPa). Nevertheless, group 4: photoactivated RB-doped 5 wt% TiO2NPs adhesive displayed the lowest outcomes of S.mutans survival (0.11 ± 0.02 CFU/mL) and highest bond strength (18.76 ± 1.45 MPa). The photoactivated RB-doped 2 wt% TiO2NPs in adhesive demonstrated promising enhancements in both µTBS and antibacterial efficacy against S.mutans. However, it is noteworthy that this modification led to a decrease in the DC of the adhesive. RESEARCH HIGHLIGHTS: Unmodified ERA-treated samples unveiled the highest bacterial survival and the lowest µTBS. Photoactivated RB-doped 5 wt% TiO2NPs adhesive displayed the lowest S.mutans survival rate and highest bond strength. DC decreased with an increase in concentration of TiO2.
RESUMO
This study developed a new dual delivery system of naringenin (NRG), a polyphenol, and doxofylline (DOX), a xanthine derivative, as an inhaled microsphere system. In this system, NRG has been first loaded into glyceryl tristearate-based solid lipid nanoparticles (NRG SLN), which were further loaded with DOX into swellable chitosan-tripolyphosphate-based microspheres (NRG SLN DOX sMS). The system was characterized based on particle size, PDI, zeta potential, surface morphology (SEM, AFM, and TEM), solid-state and chemical properties (XRD, IR, and NMR), aerodynamic parameters, drug loading, entrapment efficiency and in vitro drug release study. The optimized NRG SLN DOX sMS exhibited particle size, zeta potential, and PDI of 2.1 µm, 31.2 mV, and 0.310, respectively; a drug entrapment efficiency > 79 %; a drug loading efficiency > 13 %; cumulative drug releases of about 78 % for DOX and 72 % for NRG after 6 and 12 h, respectively; good swelling and desirable aerodynamic properties. In addition, in vivo studies conducted in mice, a murine model of asthma showed significant reductions in serum bicarbonate and eosinophil counts and improvement in respiratory flow rate, tidal volume, and bronchial wall lining compared with the asthmatic control group. Overall, this novel inhalable dual-delivery system may represent a good alternative for the effective treatment of asthma.
Assuntos
Asma , Flavanonas , Lipossomos , Nanopartículas , Teofilina/análogos & derivados , Camundongos , Animais , Microesferas , Nanopartículas/química , Asma/tratamento farmacológico , Tamanho da Partícula , Portadores de Fármacos/químicaRESUMO
AIM: Effect of nanoparticles (NPs) loaded methylene blue (MB) mediated photodynamic therapy (PDT) on caries-affected dentin (CAD) against S.mutans, smear layer (SL) elimination, and shear bond strength (SBS) of single bottle 7th generation adhesive. METHODOLOGY: Sixty human molars with carious lesions were selected. Samples were randomly allocated into four groups, based on the disinfection regime (n = 11) Group 1-(CHX), Group 2-(MB-PDT), Group 3-(MB-CNPs-PDT), and Group 4-(MB-TiO2NPs-PDT). Following disinfection S.mutans' survival rate was assessed using the pour plate method. Five specimens from each disinfection group were subjected to SL removal assessment using a scanning electron microscope (SEM). Bonding of 7th generation adhesive and composite restoration was performed on ten samples from each group. Artificial aging of the bonded samples was performed followed by SBS and failure mode analysis using a universal testing machine and stereomicroscope respectively. One-way analysis of variance (ANOVA) and Tukey post hoc test were used to analyze the data. RESULTS: Group 3 (MB-CNPs-PDT) treated CAD surface unveiled the lowest survival rate (0.12 ± 0.02 CFU/mL) of tested bacteria, maximum SL removal (1.21 ± 0.35), and highest bond strength (13.42 ± 1.05). However, Group 1 (CHX) treated specimens displayed the highest survival rate (0.53 ± 0.11 CFU/mL) with the lowest SL removal (2.24 ± 0.30) and SBS (8.88 ± 0.73 MPa). CONCLUSION: MB-CNPs-PDT appears to be a suitable alternative to CHX for CAD disinfection as it displayed better antibacterial efficacy, SL removal, and SBS with 7th generation single bottle adhesive.
RESUMO
In the current work, favipiravir (an antiviral drug) loaded pH-responsive polymeric hydrogels were developed by the free redical polymerization technique. Box-Behnken design method via Design Expert version 11 was employed to furnish the composition of all hydrogel formulations. Here, polyethylene glycol (PEG) has been utilized as a polymer, acrylic acid (AA) as a monomer, and potassium persulfate (KPS) and methylene-bisacrylamide (MBA) as initiator and cross-linker, respectively. All networks were evaluated for in-vitro drug release (%), sol-gel fraction (%), swelling studies (%), porosity (%), percentage entrapment efficiency, and chemical compatibilities. According to findings, the swelling was pH sensitive and was shown to be greatest at a pH of 6.8 (2500%). The optimum gel fraction offered was 97.8%. A sufficient porosity allows the hydrogel to load a substantial amount of favipiravir despite its hydrophobic behavior. Hydrogels exhibited maximum entrapment efficiency of favipiravir upto 98%. The in-vitro release studies of drug-formulated hydrogel revealed that the drug release from hydrogel was between 85 to 110% within 24 h. Drug-release kinetic results showed that the Korsmeyer Peppas model was followed by most of the developed formulations based on the R2 value. In conclusion, the hydrogel-based technology proved to be an excellent option for creating the sustained-release dosage form of the antiviral drug favipiravir.
Assuntos
Amidas , Antivirais , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Hidrogéis , Pirazinas , Preparações de Ação Retardada/química , Hidrogéis/química , Amidas/química , Amidas/administração & dosagem , Concentração de Íons de Hidrogênio , Antivirais/química , Antivirais/administração & dosagem , Antivirais/farmacocinética , Pirazinas/química , Pirazinas/administração & dosagem , Pirazinas/farmacocinética , Polietilenoglicóis/química , Reagentes de Ligações Cruzadas/químicaRESUMO
AIM: To evaluate the effect of different bleaching methods 40% (hydrogen peroxide) HP and Zinc Phthalocyanine (ZP) activated by photodynamic therapy (PDT) with the utilization of diverse procedures of reversal (10% ascorbic acid and 6% cranberry solution) on bond values, surface microhardness and surface roughness of bleached enamel surface. MATERIAL AND METHODS: An aggregate of 60 extracted human mandibular molars was gathered and the buccal surface of each specimen was exposed to 2 mm of enamel surface for bleaching with chemical and photoactivated agents with the use of reversal solutions. Specimens were divided into six groups (n = 10) at random- Group 1: samples bleached with 40% HP with 10% ascorbic acid (reversal agent), group 2: ZP activated by PDT with 10% ascorbic acid (reversal agent), group 3: 40% HP with 6% cranberry solution as a reversal agent, group 4: ZP activated by PDT with 6% cranberry solution, group 5: 40% HP and group 6: ZP activated by PDT with no reversal agents. Resin cement restoration was performed via etch and rinse technique and SBS was estimated by using the universal testing machine, SMH by using Vickers hardness tester, and Ra by stylus profilometer. Statistical analysis was executed using the ANOVA test and the Tukey multiple tests (p<0.05). RESULTS: Enamel surface bleached with 40% HP reversed with 10% ascorbic acid displayed the highest SBS while 40% HP with no reversal agent use showed the least SBS. For SMH, ZP activated by PDT when applied on the enamel surface and reversed with 10% ascorbic acid showed the highest SMH while when bleached with 40% HP and reversed with 6% cranberry solution showed the least SMH value. For Ra, Group 3: samples bleached with 40% HP with 6% cranberry solution as reversal agent showed the highest Ra value while bleaching of enamel surface with ZP activated by PDT with 6% cranberry displayed the least Ra value. CONCLUSION: Bleached enamel surface with Zinc Phthalocyanine activated by PDT with the application of 10% ascorbic acid as reversal solution has demonstrated the highest SBS and SMH with acceptable surface roughness for bonding adhesive resin to the enamel surface.
Assuntos
Fotoquimioterapia , Clareamento Dental , Vaccinium macrocarpon , Humanos , Peróxido de Hidrogênio/farmacologia , Ácido Ascórbico/farmacologia , Ácido Ascórbico/química , Clareamento Dental/métodos , Dureza , Resinas Compostas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Ácido HipoclorosoRESUMO
In this study bupivacaine (BVC) was encapsulated in Nano-capsules of poly-ε-caprolactone (PCL) and its cytotoxicity in HaCaT (MTT) cells, its permeability in the oesophageal epithelium of pigs, as well as its anesthetic effect in the incision model of rat's hind paw (electronic von Frey anesthesiometer) were evaluated. BVC and epinephrine-associated bupivacaine (BVC-Epi) have been compared to BVC-Nano and it was demonstrated that BVC-Nano had high physicochemical properties and remained stable for 120 days; also, encapsulation of bupivacaine did not affect its toxicity to HaCaT cells, but epinephrine reduced its toxicity. Although both methods of combination with epinephrine and encapsulation in nanocapsules resulted in an extended time of anesthesia, the efficacy of epinephrine was more favorable. The permeation evaluation indicated that encapsulation increased both the permeability coefficient and the steady-state flux of bupivacaine across the esophageal epithelium. BVC permeation was enhanced by encapsulation into Nano-capsules, as a new novel therapeutic strategy, facilitating future research as a topical anesthetic.
Assuntos
Bupivacaína , Poliésteres , Anestésicos Locais/química , Animais , Bupivacaína/química , Caproatos , Lactonas , Ratos , SuínosRESUMO
Cryptococcus neoformans is one of the most lethal fungi causing mortality across the globe. Immuno-competent patients and patients taking immuno-suppressive medications are extremely susceptible to its infection. For effective removal of cryptococcal burden, there is an urgent need for new forms of therapy. In the present study, we have explored the potential effects of amphotericin B (AMB) and fluconazole (FLC) in combination, against cryptococcosis in Swiss albino mice. To enhance the therapeutic potential of the tested drugs, they were entrapped into fibrin microspheres; a dual delivery vehicle comprising of poly-lactide co-glycolide (PLGA) microsphere that was additionally encapsulated into the fibrin cross-linked plasma bead. Dynamics of fibrin microspheres included survival and fungal burden in lung, liver and spleen of treated mice. While each drug was effective in combination or alone, prominent additive potential of AMB and FLC were clearly observed when used in fibrin microsphere. Significant reduction in fungal burden and increase in survival rate of AMBâ¯+â¯FLC-fibrin microspheres treated mice shows an extensive accessibility of both tested drugs without any side-effects. A full potential of two-drug combination encapsulated in fibrin microspheres proposes an effective approach of safe delivery to the target site in their intact form and decrease the drug associated toxicities.