Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Am Chem Soc ; 144(8): 3564-3571, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35179866

RESUMO

White-rot fungi secrete a repertoire of high-redox potential oxidoreductases to efficiently decompose lignin. Of these enzymes, versatile peroxidases (VPs) are the most promiscuous biocatalysts. VPs are attractive enzymes for research and industrial use but their recombinant production is extremely challenging. To date, only a single VP has been structurally characterized and optimized for recombinant functional expression, stability, and activity. Computational enzyme optimization methods can be applied to many enzymes in parallel but they require accurate structures. Here, we demonstrate that model structures computed by deep-learning-based ab initio structure prediction methods are reliable starting points for one-shot PROSS stability-design calculations. Four designed VPs encoding as many as 43 mutations relative to the wildtype enzymes are functionally expressed in yeast, whereas their wildtype parents are not. Three of these designs exhibit substantial and useful diversity in their reactivity profiles and tolerance to environmental conditions. The reliability of the new generation of structure predictors and design methods increases the scale and scope of computational enzyme optimization, enabling efficient discovery and exploitation of the functional diversity in natural enzyme families directly from genomic databases.


Assuntos
Basidiomycota , Peroxidases , Lignina , Peroxidases/química , Peroxidases/genética , Reprodutibilidade dos Testes
2.
Appl Environ Microbiol ; 81(18): 6451-62, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26162870

RESUMO

Aryl-alcohol oxidase (AAO) is an extracellular flavoprotein that supplies ligninolytic peroxidases with H2O2 during natural wood decay. With a broad substrate specificity and highly stereoselective reaction mechanism, AAO is an attractive candidate for studies into organic synthesis and synthetic biology, and yet the lack of suitable heterologous expression systems has precluded its engineering by directed evolution. In this study, the native signal sequence of AAO from Pleurotus eryngii was replaced by those of the mating α-factor and the K1 killer toxin, as well as different chimeras of both prepro-leaders in order to drive secretion in Saccharomyces cerevisiae. The secretion of these AAO constructs increased in the following order: preproα-AAO > preαproK-AAO > preKproα-AAO > preproK-AAO. The chimeric preαproK-AAO was subjected to focused-directed evolution with the aid of a dual screening assay based on the Fenton reaction. Random mutagenesis and DNA recombination was concentrated on two protein segments (Met[α1]-Val109 and Phe392-Gln566), and an array of improved variants was identified, among which the FX7 mutant (harboring the H91N mutation) showed a dramatic 96-fold improvement in total activity with secretion levels of 2 mg/liter. Analysis of the N-terminal sequence of the FX7 variant confirmed the correct processing of the preαproK hybrid peptide by the KEX2 protease. FX7 showed higher stability in terms of pH and temperature, whereas the pH activity profiles and the kinetic parameters were maintained. The Asn91 lies in the flavin attachment loop motif, and it is a highly conserved residue in all members of the GMC superfamily, except for P. eryngii and P. pulmonarius AAO. The in vitro involution of the enzyme by restoring the consensus ancestor Asn91 promoted AAO expression and stability.


Assuntos
Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Evolução Molecular Direcionada , Sinais Direcionadores de Proteínas , Saccharomyces cerevisiae/genética , Oxirredutases do Álcool/química , Estabilidade Enzimática/genética , Flavoproteínas/genética , Cinética , Lignina/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Pleurotus/genética , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Recombinação Genética , Saccharomyces cerevisiae/enzimologia , Especificidade por Substrato
3.
BMC Biotechnol ; 13: 38, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23627343

RESUMO

BACKGROUND: Basidiomycete high-redox potential laccases (HRPLs) working in human physiological fluids (pH 7.4, 150 mM NaCl) arise great interest in the engineering of 3D-nanobiodevices for biomedical uses. In two previous reports, we described the directed evolution of a HRPL from basidiomycete PM1 strain CECT 2971: i) to be expressed in an active, soluble and stable form in Saccharomyces cerevisiae, and ii) to be active in human blood. In spite of the fact that S. cerevisiae is suited for the directed evolution of HRPLs, the secretion levels obtained in this host are not high enough for further research and exploitation. Thus, the search for an alternative host to over-express the evolved laccases is mandatory. RESULTS: A blood-active laccase (ChU-B mutant) fused to the native/evolved α-factor prepro-leader was cloned under the control of two different promoters (P(AOX1) and P(GAP)) and expressed in Pichia pastoris. The most active construct, which contained the P(AOX1) and the evolved prepro-leader, was fermented in a 42-L fed-batch bioreactor yielding production levels of 43 mg/L. The recombinant laccase was purified to homogeneity and thoroughly characterized. As happened in S. cerevisiae, the laccase produced by P. pastoris presented an extra N-terminal extension (ETEAEF) generated by an alternative processing of the α-factor pro-leader at the Golgi compartment. The laccase mutant secreted by P. pastoris showed the same improved properties acquired after several cycles of directed evolution in S. cerevisiae for blood-tolerance: a characteristic pH-activity profile shifted to the neutral-basic range and a greatly increased resistance against inhibition by halides. Slight biochemical differences between both expression systems were found in glycosylation, thermostability and turnover numbers. CONCLUSIONS: The tandem-yeast system based on S. cerevisiae to perform directed evolution and P. pastoris to over-express the evolved laccases constitutes a promising approach for the in vitro evolution and production of these enzymes towards different biocatalytic and bioelectrochemical applications.


Assuntos
Lacase/biossíntese , Pichia/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/biossíntese , Fenômenos Fisiológicos Sanguíneos , Clonagem Molecular , Evolução Molecular Direcionada , Estabilidade Enzimática , Glicosilação , Humanos , Cinética , Lacase/química , Lacase/genética , Lacase/metabolismo , Modelos Moleculares , Mutação , Pichia/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cloreto de Sódio/química , Fluoreto de Sódio/química
4.
BMC Biotechnol ; 13: 90, 2013 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-24159930

RESUMO

BACKGROUND: Fungal laccases are multicopper oxidases with huge applicability in different sectors. Here, we describe the development of a set of high-throughput colorimetric assays for screening laccase libraries in directed evolution studies. RESULTS: Firstly, we designed three colorimetric assays based on the oxidation of sinapic acid, acetosyringone and syringaldehyde with λmax of 512, 520 and 370 nm, respectively. These syringyl-type phenolic compounds are released during the degradation of lignocellulose and can act as laccase redox mediators. The oxidation of the three compounds by low and high-redox potential laccases evolved in Saccharomyces cerevisiae produced quantifiable and linear responses, with detection limits around 1 mU/mL and CV values below 16%. The phenolic substrates were also suitable for pre-screening mutant libraries on solid phase format. Intense colored-halos were developed around the yeast colonies secreting laccase. Furthermore, the oxidation of violuric acid to its iminoxyl radical (λmax of 515 nm and CV below 15%) was devised as reporter assay for laccase redox potential during the screening of mutant libraries from high-redox potential laccases. Finally, we developed three dye-decolorizing assays based on the enzymatic oxidation of Methyl Orange (470 nm), Evans Blue (605 nm) and Remazol Brilliant Blue (640 nm) giving up to 40% decolorization yields and CV values below 18%. The assays were reliable for direct measurement of laccase activity or to indirectly explore the oxidation of mediators that do not render colored products (but promote dye decolorization). Every single assay reported in this work was tested by exploring mutant libraries created by error prone PCR of fungal laccases secreted by yeast. CONCLUSIONS: The high-throughput screening methods reported in this work could be useful for engineering laccases for different purposes. The assays based on the oxidation of syringyl-compounds might be valuable tools for tailoring laccases precisely enhanced to aid biomass conversion processes. The violuric assay might be useful to preserve the redox potential of laccase whilst evolving towards new functions. The dye-decolorizing assays are useful for engineering ad hoc laccases for detoxification of textile wastewaters, or as indirect assays to explore laccase activity on other natural mediators.


Assuntos
Evolução Molecular Direcionada/métodos , Proteínas Fúngicas/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Lacase/metabolismo , Saccharomyces cerevisiae/enzimologia , Compostos Azo/metabolismo , Barbitúricos/metabolismo , Biomassa , Colorimetria , Meios de Cultura/química , Azul Evans/metabolismo , Proteínas Fúngicas/genética , Lacase/genética , Lignina/química , Oxirredução , Fenol/química , Engenharia de Proteínas/métodos , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética
5.
Biotechnol Adv ; 35(6): 815-831, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28624475

RESUMO

Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H2O2 as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating H2O2 that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other H2O2 generating enzymes - copper-radical oxidases - together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. However, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly "fueling" electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D3, drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations.


Assuntos
Biotransformação , Lacase/química , Oxirredutases/química , Dinitrocresóis/química , Fungos/química , Fungos/enzimologia , Heme/química , Heme/genética , Lacase/genética , Lignina/química , Lignina/genética , Oxirredução , Oxirredutases/classificação , Oxirredutases/genética , Peroxidases/química , Peroxidases/genética
6.
Trends Biotechnol ; 33(3): 155-62, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25600621

RESUMO

The ligninolytic enzyme consortium is one of the most-efficient oxidative systems found in nature, playing a pivotal role during wood decay and coal formation. Typically formed by high redox-potential oxidoreductases, this array of enzymes can be used within the emerging lignocellulose biorefineries in processes that range from the production of bioenergy to that of biomaterials. To ensure that these versatile enzymes meet industry standards and needs, they have been subjected to directed evolution and hybrid approaches that surpass the limits imposed by nature. This Opinion article analyzes recent achievements in this field, including the incipient groundbreaking research into the evolution of resurrected enzymes, and the engineering of ligninolytic secretomes to create consolidated bioprocessing microbes with synthetic biology applications.


Assuntos
Lignina/metabolismo , Engenharia Metabólica , Consórcios Microbianos/genética , Oxirredutases/genética , Oxirredutases/metabolismo
7.
J Biomol Screen ; 7(6): 547-53, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14599353

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are highly toxic organic pollutants widely distributed in terrestrial and aquatic environments. In the present work, 2 colorimetric assays for laccase-catalyzed degradation of PAHs were developed based on studies of the oxidation of 12 aromatic hydrocarbons by fungal laccases from Trametes versicolor and Myceliophthora thermophila. Using a sodium borohydride water-soluble solution, the authors could reduce the single product of laccase-catalyzed anthracene biooxidation into the orange-colored 9,10-anthrahydroquinone, which is quantifiable spectrophotometrically. An assay using polymeric dye (Poly R-478) as a surrogate substrate for lignin degradation by laccase in the presence of mediator is also presented. The decolorization of Poly R-478 was correlated to the oxidation of PAHs mediated by laccases. This demonstrates that a ligninolytic indicator such as Poly R-478 can be used to screen for PAH-degrading laccases; it will also be useful in screening mutant libraries in directed evolution experiments. Poly R-478 is stable and readily soluble. It has a high extinction coefficient and low toxicity toward white rot fungi, yeast, and bacteria, which allow its application in a solid-phase assay format.


Assuntos
Colorimetria/métodos , Proteínas Fúngicas/metabolismo , Lacase/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Antracenos/química , Antracenos/metabolismo , Antraquinonas/química , Antraquinonas/metabolismo , Biodegradação Ambiental , Corantes/química , Oxirredução , Polímeros/química
8.
Biotechnol Prog ; 20(5): 1414-20, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15458325

RESUMO

Dextransucrase from Leuconostoc mesenteroides B-512F was immobilized on epoxy-activated acrylic polymers with different textural properties (Eupergit C and Eupergit C 250L). Prior to immobilization, dextransucrase was treated with dextranase to remove the dextran layer covering the enzyme surface, thus increasing the accessibility of its reactive groups to the epoxide centers of the support. Elimination of 99% of the initial carbohydrate content was determined by the anthrone method. To prevent enzyme inactivation, the immobilization was carried out at pH 5.4, at which the coupling to the support took place through the carboxylic groups of the enzyme. The effects of the amount (mg) of dextransucrase added per gram of support (from 0.2:1 to 30:1), temperature and contact time were studied. Maximum activity recovery of 22% was achieved using Eupergit C 250L. Using this macroporous support, the maximum specific activity (710 U/g biocatalyst) was significantly higher than that obtained with the less porous Eupergit C (226 U/g biocatalyst). The dextransucrase immobilized on Eupergit C 250L showed similar optimal temperature (30 degrees C) and pH (5-6) compared with the native enzyme. In contrast, a notable stabilization effect at 30 degrees C was observed as a consequence of immobilization. After a fast partial inactivation, the dextransucrase immobilized on Eupergit C 250L maintained more than 40% of the initial activity over the following 2 days. The features of this immobilized system are very attractive for its application in batch and fixed-bed bioreactors.


Assuntos
Reatores Biológicos , Enzimas Imobilizadas/química , Glucosiltransferases/química , Leuconostoc/enzimologia , Membranas Artificiais , Polímeros/química , Ultrafiltração/métodos , Ativação Enzimática , Estabilidade Enzimática , Porosidade , Ligação Proteica , Propriedades de Superfície , Temperatura , Ultrafiltração/instrumentação
9.
Carbohydr Res ; 339(6): 1029-34, 2004 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-15063188

RESUMO

Mutans streptococci are oral bacteria with a key role in the initiation of dental caries, because their glucosyltransferases synthesize polysaccharides from sucrose that allow them to colonize the tooth surface. Among the strategies to prevent dental caries that are being investigated are (1) the inhibition of bacterial growth of mutans streptococci or (2) the inhibition of glucosyltransferases involved in polysaccharide formation. Pure fatty acid esters of sucrose, maltose and maltotriose were synthesized by an enzyme-catalyzed process and tested as inhibitors of two glucosyltransferases of great homology, those from Streptococcus sobrinus and Leuconostoc mesenteroides NRRL B-512F. In spite of having their nonreducing end glucose blocked at 6-OH, they did not inhibit dextran synthesis. However, their effect on the growth of S. sobrinus in the solid and liquid phase was notable. 6-O-Lauroylsucrose, 6'-O-lauroylmaltose and 6"-O-lauroylmaltotriose at 100 microg/mL showed complete inhibition of S. sobrinus in agar plates. Consequently, these nontoxic derivatives are very promising for inclusion in oral-hygiene products aimed at disrupting plaque formation and preventing caries.


Assuntos
Carboidratos/química , Glucosiltransferases/química , Streptococcus sobrinus/metabolismo , Ágar/química , Configuração de Carboidratos , Sequência de Carboidratos , Divisão Celular , Cárie Dentária/microbiologia , Relação Dose-Resposta a Droga , Ésteres/química , Ácidos Graxos/química , Glicosiltransferases/química , Humanos , Leuconostoc/metabolismo , Maltose/química , Modelos Químicos , Polissacarídeos/química , Sacarose/química , Trissacarídeos/química
10.
Bioengineered ; 5(4): 254-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24830983

RESUMO

The ligninolytic enzymatic consortium produced by white-rot fungi is one of the most efficient oxidative systems found in nature, with many potential applications that range from the production of 2nd generation biofuels to chemicals synthesis. In the current study, two high redox potential oxidoreductase fusion genes (laccase -Lac- and versatile peroxidase -Vp-) that had been evolved in the laboratory were re-assembled in Saccharomyces cerevisiae. First, cell viability and secretion were assessed after co-transforming the Lac and Vp genes into yeast. Several expression cassettes were inserted in vivo into episomal bi-directional vectors in order to evaluate inducible promoter and/or terminator pairs of different strengths in an individual and combined manner. The synthetic white-rot yeast model harboring Vp(GAL1/CYC1)-Lac(GAL10/ADH1) displayed up to 1000 and 100 Units per L of peroxidase and laccase activity, respectively, representing a suitable point of departure for future synthetic biology studies.


Assuntos
Lacase/metabolismo , Peroxidases/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Clonagem Molecular , Fermentação , Vetores Genéticos/genética , Lacase/genética , Lignina/química , Peroxidases/genética , Phanerochaete/enzimologia , Phanerochaete/genética , Pleurotus/enzimologia , Pleurotus/genética , Regiões Promotoras Genéticas , Conformação Proteica , Engenharia de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA