Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674655

RESUMO

Mycobacterium tuberculosis is able to establish a chronic colonization of lung macrophages in a controlled replication manner, giving rise to a so-called latent infection. Conversely, when intracellular bacteria undergo actively uncontrolled replication rates, they provide the switch for the active infection called tuberculosis to occur. Our group found that the pathogen is able to manipulate the activity of endolysosomal enzymes, cathepsins, directly at the level of gene expression or indirectly by regulating their natural inhibitors, cystatins. To provide evidence for the crucial role of cathepsin manipulation for the success of tuberculosis bacilli in their intracellular survival, we used liposomal delivery of saquinavir. This protease inhibitor was previously found to be able to increase cathepsin proteolytic activity, overcoming the pathogen induced blockade. In this study, we demonstrate that incorporation in liposomes was able to increase the efficiency of saquinavir internalization in macrophages, reducing cytotoxicity at higher concentrations. Consequently, our results show a significant impact on the intracellular killing not only to reference and clinical strains susceptible to current antibiotic therapy but also to multidrug- and extensively drug-resistant (XDR) Mtb strains. Altogether, this indicates the manipulation of cathepsins as a fine-tuning strategy used by the pathogen to survive and replicate in host cells.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/metabolismo , Catepsinas/metabolismo , Saquinavir/farmacologia , Saquinavir/metabolismo , Lipossomos/metabolismo , Macrófagos/metabolismo , Tuberculose/microbiologia , Interações Hospedeiro-Patógeno/fisiologia
2.
J Agric Food Chem ; 70(14): 4221-4242, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35357173

RESUMO

Over the years, the growth of the world population has caused a huge agricultural production to support the population's needs. Since plant protection products are essential to preserve agricultural crops and to optimize vital plant processes, it is crucial to use more sustainable, biodegradable, and biocompatible raw materials, without harming the environment and human health. Although the development of new plant protection products is a costly process, the environmental benefits should be considered. In this context, marine raw materials obtained as byproducts of fishing industries, possessing a wide variety of physicochemical and biological properties, can serve as a promising source of such materials. They have a high potential for developing alternative and safe formulations for agricultural applications, not only as biocompatible excipients but also as effective and selective, or even both. It is also possible to promote a synergistic effect between an active substance and the biological activity of the marine polymer used in the formulation, enabling plant protection products with lower concentrations of the active substances. Thus, this review addresses the repurposing of marine raw materials for the development of innovative plant protection products, focusing on micro- and nanoparticulate formulations, to protect the environment through more ecological and sustainable strategies.


Assuntos
Agricultura , Produtos Agrícolas , Materiais Biocompatíveis , Humanos , Polímeros
3.
Int J Pharm ; 559: 13-22, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30664999

RESUMO

Hyaluronic acid (HA) is commonly used through intra-articular administration for viscosupplementation in osteoarthritis and other disorders. HA is generally supplied as an injection commonly reported as painful, with strong limitations after treatment. In this study, an alternative delivery system was constructed based on HA hydrogel and poly(lactic-co-glycolic acid) (PLGA) particles with oleic acid. Development studies included the determination of particle toxicity, hemolytic activity, in vitro and in vivo anti-inflammatory activity using macrophages and a murine model, respectively. This study showed that empty PLGA particles presented a mean size of 373 nm, while particles containing HA and oleic acid showed a marked particle size increase. The HA association efficiency was of 73.6% and 86.2% for PLGA particles without and with oleic acid, respectively. The in vitro HA release from PLGA particles revealed a sustained profile. Particles showed a good in vitro cell compatibility and the risk of hemolysis was less <1%, ensuring their safety. The in vivo anti-inflammatory study showed a higher inhibition for HA-loaded PLGA particles when compared to HA solution (78% versus 60%) and they were not different from the positive control, clearly suggesting that this formulation may be a promising alternative to the current HA commercial dosage form.


Assuntos
Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Osteoartrite/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Linhagem Celular , Sobrevivência Celular , Hidrogéis/química , Hidrogéis/farmacologia , Masculino , Camundongos , Nanopartículas/química , Tamanho da Partícula , Células RAW 264.7 , Ratos , Ratos Wistar , Viscossuplementação/métodos
4.
Appl Biochem Biotechnol ; 162(1): 192-207, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19937396

RESUMO

Phenylketonuria (PKU; OMIM 261600), the most common disorder of amino acid metabolism, is caused by a deficient activity of human phenylalanine hydroxylase (hPAH). Although the dietetic treatment has proven to be effective in preventing the psycho-motor impairment, much effort has been made to develop new therapeutic approaches. Enzyme replacement therapy with hPAH could be regarded as a potential form of PKU treatment if the reported in vitro hPAH instability could be overcome. In this study, we investigated the effect of different polyol compounds, e.g. glycerol, mannitol and PEG-6000 on the in vitro stability of purified hPAH produced in a heterologous prokaryotic expression system. The recombinant human enzyme was stored in the presence of the studied stabilizing agents at different temperatures (4 and -20 degrees C) during a 1-month period. Protein content, degradation products, specific activity, oligomeric profile and conformational characteristics were assessed during storage. The obtained results showed that the use of 50% glycerol or 10% mannitol, at -20 degrees C, protected the enzyme from loss of its enzymatic activity. The determined DeltaG(0) and quenching parameters indicate the occurrence of conformational changes, which may be responsible for the observed increase in catalytic efficiency.


Assuntos
Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/metabolismo , Polímeros/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Biocatálise/efeitos dos fármacos , Cromatografia em Gel , Estabilidade Enzimática/efeitos dos fármacos , Humanos , Fenilalanina Hidroxilase/isolamento & purificação , Desnaturação Proteica/efeitos dos fármacos , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Fluorescência , Temperatura , Termodinâmica , Fatores de Tempo , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA