Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Ecol ; 76(2): 492-505, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29270662

RESUMO

It has been suggested that food storage inside the nest may offer termites with a nutritional provision during low resource availability. Additionally, feces employed as construction material provide an excellent environment for colonization by microorganisms and, together with the storage of plant material inside the nest, could thus provide some advantage to the termites in terms of lignocellulose decomposition. Here, we conducted for the first time a comprehensive study of the microbial communities associated to a termite exhibiting food storage behavior using Illumina sequencing of the 16S and (ITS2) regions of rRNA genes, together with enzymatic assays and data collected in the field. Cornitermes cumulans (Syntermitinae) stored grass litter in nodules made from feces and saliva located in the nest core. The amount of nodules increased with nest size and isolation, and interestingly, the soluble fraction of extracts from nodules showed a higher activity against hemicellulosic substrates compared to termite guts. Actinobacteria and Sordariales dominated microbial communities of food nodules and nest walls, whereas Spirochetes and Pleosporales dominated gut samples of C. cumulans. Within Syntermitinae, however, gut bacterial assemblages were dissimilar. On the other hand, there is a remarkable convergence of the bacterial community structure of Termitidae nests. Our results suggest that the role of nodules could be related to food storage; however, the higher xylanolytic activity in the nodules and their associated microbiota could also provide C. cumulans with an external source of predigested polysaccharides, which might be advantageous in comparison with litter-feeding termites that do not display food storage behavior.


Assuntos
Armazenamento de Alimentos , Isópteros/microbiologia , Microbiota/fisiologia , Polissacarídeos/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Comportamento Animal , DNA Bacteriano/genética , Ensaios Enzimáticos , Fezes/microbiologia , Fungos/classificação , Fungos/genética , Microbioma Gastrointestinal , Trato Gastrointestinal/enzimologia , Trato Gastrointestinal/microbiologia , Genes de RNAr/genética , Lignina/metabolismo , Comportamento de Nidação , Filogenia , RNA Ribossômico 16S/genética , Saliva/microbiologia , Análise de Sequência de DNA
2.
J Biol Chem ; 291(45): 23734-23743, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27621314

RESUMO

Carbohydrate-binding modules (CBMs) are appended to glycoside hydrolases and can contribute to the degradation of complex recalcitrant substrates such as the plant cell wall. For application in bioethanol production, novel enzymes with high catalytic activity against recalcitrant lignocellulosic material are being explored and developed. In this work, we report the functional and structural study of CBM_E1, which was discovered through a metagenomics approach and is the founding member of a novel CBM family, CBM81. CBM_E1, which is linked to an endoglucanase, displayed affinity for mixed linked ß1,3-ß1,4-glucans, xyloglucan, Avicel, and cellooligosaccharides. The crystal structure of CBM_E1 in complex with cellopentaose displayed a canonical ß-sandwich fold comprising two ß-sheets. The planar ligand binding site, observed in a parallel orientation with the ß-strands, is a typical feature of type A CBMs, although the expected affinity for bacterial crystalline cellulose was not detected. Conversely, the binding to soluble glucans was enthalpically driven, which is typical of type B modules. These unique properties of CBM_E1 are at the interface between type A and type B CBMs.


Assuntos
Bactérias/enzimologia , Celulase/metabolismo , Metagenoma , Saccharum/microbiologia , Microbiologia do Solo , Bactérias/química , Bactérias/genética , Bactérias/metabolismo , Sítios de Ligação , Celulase/química , Celulase/genética , Celulose/metabolismo , Cristalografia por Raios X , Glucanos/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Oligossacarídeos/metabolismo , Conformação Proteica , Termodinâmica , Xilanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA