Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
In Vitro Cell Dev Biol Anim ; 60(6): 657-666, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38743380

RESUMO

The integration of precision medicine principles into bone tissue engineering has ignited a wave of research focused on customizing intricate scaffolds through advanced 3D printing techniques. Bioceramics, known for their exceptional biocompatibility and osteoconductivity, have emerged as a promising material in this field. This article aims to evaluate the regenerative capabilities of a composite scaffold composed of 3D-printed gelatin combined with hydroxyapatite/tricalcium phosphate bioceramics (G/HA/TCP), incorporating human dental pulp-derived stem cells (hDPSCs). Using 3D powder printing, we created cross-shaped biphasic calcium phosphate scaffolds with a gelatin layer. The bone-regenerating potential of these scaffolds, along with hDPSCs, was assessed through in vitro analyses and in vivo studies with 60 rats and critical-sized calvarial defects. The assessment included analyzing cellular proliferation, differentiation, and alkaline phosphatase activity (ALP), and concluded with a detailed histological evaluation of bone regeneration. Our study revealed a highly favorable scenario, displaying not only desirable cellular attachment and proliferation on the scaffolds but also a notable enhancement in the ALP activity of hDPSCs, underscoring their pivotal role in bone regeneration. However, the histological examination of calvarial defects at the 12-wk mark yielded a rather modest level of bone regeneration across all experimental groups. The test and cell group exhibited significant bone formation compared to all other groups except the control and cell group. This underscores the complexity of the regenerative process and paves the way for further in-depth investigations aimed at improving the potential of the composite scaffolds.


Assuntos
Regeneração Óssea , Diferenciação Celular , Proliferação de Células , Cerâmica , Osteogênese , Impressão Tridimensional , Alicerces Teciduais , Alicerces Teciduais/química , Osteogênese/efeitos dos fármacos , Animais , Humanos , Cerâmica/química , Cerâmica/farmacologia , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ratos , Proliferação de Células/efeitos dos fármacos , Engenharia Tecidual/métodos , Células-Tronco/citologia , Polpa Dentária/citologia , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Crânio/patologia , Masculino , Fosfatase Alcalina/metabolismo
2.
J Biomed Mater Res A ; 111(3): 322-339, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36334300

RESUMO

Magnesium (Mg) plays an important role in controlling bone apatite structure and density and is a potential bioactive material in repairing critical-sized bone defects. In this study, we aimed to evaluate the effect of adding NanoMgO to polycaprolactone/beta-tricalcium phosphate (PCL/ß-TCP) scaffolds on bone regeneration. Novel 3D-printed porous PCL/ß-TCP composite scaffolds containing 10% nanoMgO were fabricated by fused deposition modeling (FDM) and compared with PCL/ß-TCP (1:1) scaffolds (control). The morphology and physicochemical properties of the scaffolds were characterized by ATR-FTIR, XRD, scanning electron microscope-energy dispersive X-ray analysis (SEM-EDX), transmission-electron-microscopy (TEM), water contact angle, and compressive strength tests and correlated to its cytocompatibility and osteogenic capacity in-vitro. To evaluate in-vivo osteogenic capacity, bone-marrow-derived stem cell (BMSC)-loaded scaffolds were implanted into 8 mm rat critical-sized calvarial defects for 12 weeks. The hydrophilic scaffolds showed 50% porosity (pore size = 504 µm). MgO nanoparticles (91.5 ± 27.6 nm) were homogenously dispersed and did not adversely affect BMSCs' viability and differentiation. Magnesium significantly increased elastic modulus, pH, and degradation. New bone formation (NBF) in Micro-CT was 30.16 ± 0.31% and 23.56 ± 1.76% in PCL/ß-TCP/nanoMgO scaffolds with and without BMSCs respectively, and 19.38 ± 2.15% and 15.75 ± 2.24% in PCL/ß-TCP scaffolds with and without BMSCs respectively. Angiogenesis was least remarkable in PCL/ß-TCP compared with other groups (p < .05). Our results suggest that the PCL/ß-TCP/nanoMgO scaffold is a more suitable bone substitute compared to PCL/ß-TCP in critical-sized calvarial defects.


Assuntos
Nanopartículas , Engenharia Tecidual , Ratos , Animais , Alicerces Teciduais/química , Óxido de Magnésio/farmacologia , Magnésio , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Poliésteres/farmacologia , Poliésteres/química , Impressão Tridimensional
3.
J Biomed Mater Res B Appl Biomater ; 110(11): 2411-2421, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35587251

RESUMO

In this study, polyvinyl alcohol hydrogel chains were crosslinked by polyurethane in order to synthesize a suitable substrate for cartilage lesions. The substrate was fully characterized, and in vitro and in vivo investigations were conducted based on a sheep model. In vitro tests were performed based on the chondrocyte cells with the Alcian Blue and safranin O staining in order to prove the presence of proteoglycan on the surface of the synthesized substrate, which has been secreted by cultures of chondrocytes. Furthermore, the expression of collagen type I, collagen type II, aggrecan, and Sox9 was presented in the chondrocyte cultures on the synthesized substrate through RT-PCR. In addition, the H&E analysis and other related tests demonstrated the formation of neocartilage tissue in a sheep model. The results were found to be promising for cartilage tissue engineering and verified that the isolated chondrocyte cultures on the synthesized substrate retain their original composition.


Assuntos
Condrócitos , Poliuretanos , Agrecanas/metabolismo , Azul Alciano/metabolismo , Animais , Cartilagem , Células Cultivadas , Condrócitos/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo II , Poliuretanos/metabolismo , Proteoglicanas/metabolismo , Ovinos , Engenharia Tecidual/métodos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA