Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 131: 654-665, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30902719

RESUMO

For determination of the conformation of irregular sequences in glycine-rich region of the Nephila clavipes spider dragline silk, the combination of 13C selectively labeled model peptides for the typical primary structure and their 13C solid-state NMR observations is very useful (T. Asakura et al. Macromolecules. 51 (2018) 3608-3619). However, spiders produce the fiber through the stretching process in nature and therefore, it is difficult to study conformational change by stretching as mimic using the model peptides because these are generally in the powder form. In this paper, 13C selectively labeled three model peptides, (Glu)4(Ala)6GlyGly12Ala13Gly14GlnGlyGlyTyrGlyGlyLeuGlySerGlnGly25Ala26Gly27ArgGly-GlyLeuGlyGlyGlnGly35Ala36Gly37(Ala)6(Glu)4 with three underlined 13C labeled blocks and their poly(vinyl alcohol) blend films were prepared and the conformational changes of these peptides were monitored by stretching of the films using 13C solid-state NMR. In addition, the molecular dynamics simulation was done to evaluate change in the conformation of the sequence by stretching theoretically. The fractions of ß-sheet of Ala36 and Gly37 residues in glycine-rich region adjacent to the C-terminal (Ala)6 sequence increased significantly by stretching compared with those of other 13C labeled Ala and Gly residues.


Assuntos
Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Peptídeos/química , Álcool de Polivinil/química , Seda/química , Aranhas/química , Animais , Conformação Molecular
2.
J Am Chem Soc ; 129(17): 5703-9, 2007 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-17417849

RESUMO

Lamellar structure of poly(Ala-Gly) or (AG)n in the solid was examined using 13C solid-state NMR and statistical mechanical approaches. Two doubly labeled versions, [1-13C]Gly14[1-13C]Ala15- and [1-13C]Gly18[1-13C]Ala19 of (AG)15 were examined by two-dimensional (2D) 13C spin diffusion NMR in the solid state. In addition five doubly labeled [15N,13C]-versions of the same peptide, (AG) 15 and 15 versions labeled [3-13C] in each of the successive Ala residues were utilized for REDOR and 13C CP/MAS NMR measurements, respectively. The observed spin diffusion NMR spectra were consistent with a structure containing a combination of distorted beta-turns with a large distribution of the torsion angles and antiparallel beta-sheets. The relative proportion of the distorted beta-turn form was evaluated by examination of 13C CP/MAS NMR spectra of [3-13C]Ala-(AG)15. In addition, REDOR determinations showed five kinds of atomic distances between doubly labeled 13C and 15N nuclei which were also interpreted in terms of a combination of beta-sheets and beta-turns. Our statistical mechanical analysis is in excellent agreement with our Ala Cbeta 13C CP/MAS NMR data strongly suggesting that (AG)15 has a lamellar structure.


Assuntos
Peptídeos/química , Seda/química , Indicadores e Reagentes , Espectroscopia de Ressonância Magnética , Conformação Molecular , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA