Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(8): 242, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869634

RESUMO

Lignocellulosic biomass is a valuable, renewable substrate for the synthesis of polyhydroxybutyrate (PHB), an ecofriendly biopolymer. In this study, bacterial strain E5-3 was isolated from soil in Japan; it was identified as Burkholderia ambifaria strain E5-3 by 16 S rRNA gene sequencing. The strain showed optimal growth at 37 °C with an initial pH of 9. It demonstrated diverse metabolic ability, processing a broad range of carbon substrates, including xylose, glucose, sucrose, glycerol, cellobiose, and, notably, palm oil. Palm oil induced the highest cellular growth, with a PHB content of 65% wt. The strain exhibited inherent tolerance to potential fermentation inhibitors derived from lignocellulosic hydrolysate, withstanding 3 g/L 5-hydroxymethylfurfural and 1.25 g/L acetic acid. Employing a fed-batch fermentation strategy with a combination of glucose, xylose, and cellobiose resulted in PHB production 2.7-times that in traditional batch fermentation. The use of oil palm trunk hydrolysate, without inhibitor pretreatment, in a fed-batch fermentation setup led to significant cell growth with a PHB content of 45% wt, equivalent to 10 g/L. The physicochemical attributes of xylose-derived PHB produced by strain E5-3 included a molecular weight of 722 kDa, a number-average molecular weight of 191 kDa, and a polydispersity index of 3.78. The amorphous structure of this PHB displayed a glass transition temperature of 4.59 °C, while its crystalline counterpart had a melting point of 171.03 °C. This research highlights the potential of lignocellulosic feedstocks, especially oil palm trunk hydrolysate, for PHB production through fed-batch fermentation by B. ambifaria strain E5-3, which has high inhibitor tolerance.


Assuntos
Biomassa , Burkholderia , Fermentação , Hidroxibutiratos , Lignina , Óleo de Palmeira , RNA Ribossômico 16S , Xilose , Lignina/metabolismo , Óleo de Palmeira/metabolismo , Hidroxibutiratos/metabolismo , Burkholderia/metabolismo , Burkholderia/genética , Burkholderia/crescimento & desenvolvimento , Xilose/metabolismo , RNA Ribossômico 16S/genética , Microbiologia do Solo , Glucose/metabolismo , Poliésteres/metabolismo , Concentração de Íons de Hidrogênio , Furaldeído/metabolismo , Furaldeído/análogos & derivados , Celobiose/metabolismo
2.
Biodegradation ; 23(1): 57-68, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21637976

RESUMO

The anaerobic thermophilic bacterium, Clostridium thermocellum, is a potent cellulolytic microorganism that produces large extracellular multienzyme complexes called cellulosomes. To isolate C. thermocellum organisms that possess effective cellulose-degrading ability, new thermophilic cellulolytic strains were screened from more than 800 samples obtained mainly from agriculture residues in Thailand using microcrystalline cellulose as a carbon source. A new strain, C. thermocellum S14, having high cellulose-degrading ability was isolated from bagasse paper sludge. Cellulosomes prepared from S14 demonstrated faster degradation of microcrystalline cellulose, and 3.4- and 5.6-fold greater Avicelase activity than those from C. thermocellum ATCC27405 and JW20 (ATCC31449), respectively. Scanning electron microscopic analysis showed that S14 had unique cell surface features with few protuberances in contrast to the type strains. In addition, the cellulosome of S14 was resistant to inhibition by cellobiose that is a major end product of cellulose hydrolysis. Saccharification tests conducted using rice straw soaked with sodium hydroxide indicated the cellulosome of S14 released approximately 1.5-fold more total sugars compared to that of ATCC27405. This newly isolated S14 strain has the potential as an enzyme resource for effective lignocellulose degradation.


Assuntos
Celulossomas/enzimologia , Clostridium thermocellum/enzimologia , Glicosídeo Hidrolases/metabolismo , Lignina/metabolismo , Bactérias Anaeróbias/enzimologia , Bactérias Anaeróbias/genética , Celulose/metabolismo , Celulossomas/ultraestrutura , Cromatografia em Gel , Clonagem Molecular , Clostridium thermocellum/genética , Escherichia coli , Glicosídeo Hidrolases/genética , Hidrólise , Microscopia Eletrônica de Varredura , Oryza/metabolismo , RNA Bacteriano/biossíntese , RNA Bacteriano/genética , RNA Ribossômico 16S/biossíntese , RNA Ribossômico 16S/genética , Esgotos/microbiologia , Tailândia , Resíduos
3.
Appl Microbiol Biotechnol ; 90(1): 377-84, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21327413

RESUMO

In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and ß-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley ß-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.


Assuntos
Amilases/metabolismo , Celulases/metabolismo , Etanol/metabolismo , Proteínas Fúngicas/metabolismo , Engenharia Genética , Manihot/microbiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , beta-Glucosidase/metabolismo , Amilases/genética , Celulases/genética , Celulose/metabolismo , Meios de Cultura/metabolismo , Fermentação , Proteínas Fúngicas/genética , Expressão Gênica , Rhizopus/enzimologia , Rhizopus/genética , Trichoderma/enzimologia , Trichoderma/genética , beta-Glucosidase/genética
4.
Sci Rep ; 11(1): 1896, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479335

RESUMO

Poly-ß-hydroxybutyrate (PHB) is a biodegradable polymer, synthesized as carbon and energy reserve by bacteria and archaea. To the best of our knowledge, this is the first report on PHB production by a rare actinomycete species, Rhodococcus pyridinivorans BSRT1-1. Response surface methodology (RSM) employing central composite design, was applied to enhance PHB production in a flask scale. A maximum yield of 3.6 ± 0.5 g/L in biomass and 43.1 ± 0.5 wt% of dry cell weight (DCW) of PHB were obtained when using RSM optimized medium, which was improved the production of biomass and PHB content by 2.5 and 2.3-fold, respectively. The optimized medium was applied to upscale PHB production in a 10 L stirred-tank bioreactor, maximum biomass of 5.2 ± 0.5 g/L, and PHB content of 46.8 ± 2 wt% DCW were achieved. Furthermore, the FTIR and 1H NMR results confirmed the polymer as PHB. DSC and TGA analysis results revealed the melting, glass transition, and thermal decomposition temperature of 171.8, 4.03, and 288 °C, respectively. In conclusion, RSM can be a promising technique to improve PHB production by a newly isolated strain of R. pyridinivorans BSRT1-1 and the properties of produced PHB possessed similar properties compared to commercial PHB.


Assuntos
Hidroxibutiratos/química , Poliésteres/química , Polímeros/química , Rhodococcus/química , Biomassa , Carbono/química , Hidroxibutiratos/síntese química , Hidroxibutiratos/metabolismo , Poliésteres/síntese química , Poliésteres/metabolismo , Polímeros/síntese química , Polímeros/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Temperatura
5.
Environ Technol ; 37(12): 1550-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26582429

RESUMO

This study characterizes crude enzymes derived from Penicillium rolfsii c3-2(1) IBRL, a mesophilic fungus isolated from the local soil of Malaysia. Prior to enzyme activity evaluation, P. rolfsii c3-2(1) IBRL was inoculated into a broth medium containing oil-palm trunk residues for the preparation of crude enzymes. Oil-palm trunk residues were optimally hydrolysed at pH5.0 and 50°C. P. rolfsii c3-2(1) IBRL-derived crude enzymes displayed higher thermal stability compared with the commercial enzymes, Celluclast 1.5 L and Acellerase 1500. Moreover, the hydrolysing activities of the P. rolfsii c3-2(1) IBRL-derived crude enzymes (xylan, arabinan, and laminarin) were superior compared to that of Celluclast 1.5 L and Acellerase 1500, and exhibit 2- to 3-fold and 3- to 4-fold higher oil-palm trunk residues-hydrolysing specific activity, respectively. This higher hydrolysis efficiency may be attributed to the weak 'lignin-binding' ability of the P. rolfsii c3-2(1) IBRL-derived enzymes compared to the commercial enzymes.


Assuntos
Arecaceae/química , Biomassa , Celulases , Proteínas Fúngicas , Lignina/metabolismo , Penicillium/enzimologia , Celulases/isolamento & purificação , Celulases/metabolismo , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Hidrólise , Lignina/química , Eliminação de Resíduos , Fatores de Tempo
6.
Appl Microbiol Biotechnol ; 71(5): 654-60, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16532315

RESUMO

The cellulosomal family 9 cellulase genes engH, engK, engL, engM, and engY of Clostridium cellulovorans have been cloned and sequenced. We compared the enzyme activity of family 9 cellulosomal cellulases from C. cellulovorans and their derivatives. EngH has the highest activity toward soluble cellulose derivatives such as carboxymethylcellulose (CMC) as well as insoluble cellulose such as acid-swollen cellulose (ASC). EngK has high activity toward insoluble cellulose such as ASC and Avicel. The results of thin-layer chromatography showed that the cleavage products of family 9 cellulases were varied. These results indicated that family 9 endoglucanases possess different modes of attacking substrates and produce varied products. To investigate the functions of the carbohydrate-binding module (CBM) and the catalytic module, truncated derivatives of EngK, EngH, and EngY were constructed and characterized. EngHDeltaCBM and EngYDeltaCBM devoid of the CBM lost activity toward all substrates including CMC. EngKDeltaCBM and EngMDeltaCBM did not lose activity toward CMC but lost activity toward Avicel. These observations suggest that the CBM is extremely important not only because it mediates the binding of the enzyme to the substrates but also because it participates in the catalytic function of the enzyme or contributes to maintaining the correct tertiary structure of the family 9 catalytic module for expressing enzyme activity.


Assuntos
Celulase/metabolismo , Celulose/metabolismo , Clostridium cellulovorans/enzimologia , Complexos Multienzimáticos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Domínio Catalítico/genética , Celulase/química , Celulase/genética , Celulase/isolamento & purificação , Clostridium cellulovorans/química , Clostridium cellulovorans/genética , Clostridium cellulovorans/crescimento & desenvolvimento , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/isolamento & purificação , Especificidade por Substrato
7.
J Bacteriol ; 185(2): 504-12, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12511497

RESUMO

Clostridium thermocellum CelJ is a modular enzyme containing a family 30 carbohydrate-binding module (CBM) and a family 9 catalytic module at its N-terminal moiety. To investigate the functions of the CBM and the catalytic module, truncated derivatives of CelJ were constructed and characterized. Isothermal titration calorimetric studies showed that the association constants (K(a)) of the CBM polypeptide (CBM30) for the binding of cellopentaose and cellohexaose were 1.2 x 10(4) and 6.4 x 10(4) M(-1), respectively, and that the binding of CBM30 to these ligands is enthalpically driven. Qualitative analyses showed that CBM30 had strong affinity for cellulose and beta-1,3-1,4-mixed glucan such as barley beta-glucan and lichenan. Analyses of the hydrolytic action of the enzyme comprising the CBM and the catalytic module showed that the enzyme is a processive endoglucanse with strong activity towards carboxymethylcellulose, barley beta-glucan and lichenan. By contrast, the catalytic module polypeptide devoid of the CBM showed negligible activity toward these substrates. These observations suggest that the CBM is extremely important not only because it mediates the binding of the enzyme to the substrates but also because it participates in the catalytic function of the enzyme or contributes to maintaining the correct tertiary structure of the family 9 catalytic module for expressing enzyme activity.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos , Celulase/química , Celulase/metabolismo , Celulose/metabolismo , Clostridium/enzimologia , Proteínas de Bactérias/genética , Sequência de Bases , Calorimetria , Celulase/genética , Hidrólise , Dados de Sequência Molecular , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA