Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(22): e2317227121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38771870

RESUMO

The biophysical properties of lipid vesicles are important for their stability and integrity, key parameters that control the performance when these vesicles are used for drug delivery. The vesicle properties are determined by the composition of lipids used to form the vesicle. However, for a given lipid composition, they can also be tailored by tethering polymers to the membrane. Typically, synthetic polymers like polyethyleneglycol are used to increase vesicle stability, but the use of polysaccharides in this context is much less explored. Here, we report a general method for functionalizing lipid vesicles with polysaccharides by binding them to cholesterol. We incorporate the polysaccharides on the outer membrane leaflet of giant unilamellar vesicles (GUVs) and investigate their effect on membrane mechanics using micropipette aspiration. We find that the presence of the glycolipid functionalization produces an unexpected softening of GUVs with fluid-like membranes. By contrast, the functionalization of GUVs with polyethylene glycol does not reduce their stretching modulus. This work provides the potential means to study membrane-bound meshworks of polysaccharides similar to the cellular glycocalyx; moreover, it can be used for tuning the mechanical properties of drug delivery vehicles.


Assuntos
Polissacarídeos , Lipossomas Unilamelares , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Polietilenoglicóis/química , Colesterol/química , Colesterol/metabolismo , Lipídeos/química
2.
Langmuir ; 29(22): 6634-44, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23621106

RESUMO

The present work addresses the fundamental question of membrane elasticity of ceramide layers with a special focus on the plastic regime. The compression and shear viscoelasticity of egg-ceramide Langmuir monolayers were investigated using oscillatory surface rheology in the linear regime and beyond. High compression and shear moduli were measured at room temperature-a clear signature for a solid behavior. At deformations larger than one per mill, egg-ceramide monolayers display plastic features characterized by a decrease of the storage modulus followed by a viscous regime typical of fluid lipids. This behavior is accompanied by a marked decrease of the loss modulus with increasing stress above a yield point. The results permit to univocally classify ceramide monolayers as 2D solids able to undergo plastic deformations, at the difference of typical fluid lipid monolayers. These unusual features are likely to have consequences in the mechanical behavior of ceramide-rich emplacements in biological membranes.


Assuntos
Ceramidas/química , Membranas Artificiais , Animais , Galinhas , Elasticidade , Pressão , Reologia , Propriedades de Superfície , Temperatura , Viscosidade
3.
Biophys J ; 101(11): 2721-30, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22261061

RESUMO

The compression and shear viscoelasticities of egg-ceramide and its mixtures with sphingomyelin were investigated using oscillatory surface rheology performed on Langmuir monolayers. We found high values for the compression and shear moduli for ceramide, compatible with a solid-state membrane, and extremely high surface viscosities when compared to typical fluid lipids. A fluidlike rheological behavior was found for sphingomyelin. Lateral mobilities, measured from particle tracking experiments, were correlated with the monolayer viscosities through the usual hydrodynamic relationships. In conclusion, ceramide increases the solid character of sphingomyelin-based membranes and decreases their fluidity, thus drastically decreasing the lateral mobilities of embedded objects. This mechanical behavior may involve important physiological consequences in biological membranes containing ceramides.


Assuntos
Membrana Celular/química , Ceramidas/química , Reologia , Esfingomielinas/química , Força Compressiva , Módulo de Elasticidade , Imageamento Tridimensional , Polimetil Metacrilato/química , Pressão , Estresse Mecânico , Propriedades de Superfície , Viscosidade
4.
Biophys J ; 96(9): 3629-37, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19413968

RESUMO

In this study, the center-of-mass diffusion and shape fluctuations of large unilamellar 1-palmitoyl-2-oleyl-sn-glycero-phosphatidylcholine vesicles prepared by extrusion are studied by means of neutron spin echo in combination with dynamic light scattering. The intermediate scattering functions were measured for several different values of the momentum transfer, q, and for different cholesterol contents in the membrane. The combined analysis of neutron spin echo and dynamic light scattering data allows calculation of the bending elastic constant, kappa, of the vesicle bilayer. A stiffening effect monitored as an increase of kappa with increasing cholesterol molar ratio is demonstrated by these measurements.


Assuntos
Colesterol/metabolismo , Fluidez de Membrana/fisiologia , Lipossomas Unilamelares/metabolismo , Algoritmos , Elasticidade , Luz , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Espalhamento de Radiação , Termodinâmica , Lipossomas Unilamelares/química
5.
Lab Chip ; 19(5): 749-756, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30672918

RESUMO

Asymmetric vesicles are membranes in which amphiphiles are asymmetrically distributed between each membrane leaflet. This asymmetry dictates chemical and physical properties of these vesicles, enabling their use as more realistic models of biological cell membranes, which also are asymmetric, and improves their potential for drug delivery and cosmetic applications. However, their fabrication is difficult as the self-assembly of amphiphiles always leads to symmetric vesicles. Here, we report the use of water-in-oil-in-oil-in-water triple emulsion drops to direct the assembly of the two leaflets to form asymmetric vesicles. Different compositions of amphiphiles are dissolved in each of the two oil shells of the triple emulsion; the amphiphiles diffuse to the interfaces and adsorb differentially at each of the two oil/water interfaces of the triple emulsion. These middle oil phases dewet from the innermost water cores of the triple emulsion drops, leading to the formation of membranes with degrees of asymmetry up to 70%. The triple emulsion drops are fabricated using capillary microfluidics, enabling production of highly monodisperse drops at rates as high as 300 Hz. Vesicles produced by this method can very efficiently encapsulate many different ingredients; this further enhances the utility of asymmetric vesicles as artificial cells, bioreactors and delivery vehicles.


Assuntos
Lipídeos/química , Células Artificiais/química , Membrana Celular/química , Emulsões/química , Óleos/química , Tamanho da Partícula , Propriedades de Superfície , Água/química
6.
Langmuir ; 24(8): 4065-76, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18338910

RESUMO

We have studied the equilibrium and linear mechanical properties of model membranes of Escherichia coli built up as Langmuir monolayers of a native lipid extract using surface thermodynamics, fluorescence microscopy, and surface rheology measurements. The experimental study has been carried out at different temperatures across the physiological operative range 15-37 degrees C. Lipid phase coexistence has been revealed over a broad pressure range by fluorescence microscopy. The presence of ordered domains has been invoked to explain the emergence of shear elasticity accompanying the hydrostatic compression elasticity typical of fluid monolayers. The surface rheology measurements point out the soft character of E. coli membranes; i.e., upon deformation they react as a near-ideal compliant body with minimal energy dissipation, thus optimizing the effectiveness of external stresses in producing membrane deformations. These mechanical features appear to be independent of temperature, suggesting the existence of a passive thermoregulation mechanism.


Assuntos
Membrana Celular/química , Escherichia coli/química , Membranas Artificiais , Modelos Biológicos , Elasticidade , Escherichia coli/citologia , Microscopia de Fluorescência , Pressão , Reologia , Propriedades de Superfície , Temperatura , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA