Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nano Lett ; 23(3): 804-811, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36648322

RESUMO

Bioorthogonal metallocatalysis has opened up a xenobiotic route to perform nonenzymatic catalytic transformations in living settings. Despite their promising features, most metals are deactivated inside cells by a myriad of reactive biomolecules, including biogenic thiols, thereby limiting the catalytic functioning of these abiotic reagents. Here we report the development of cytocompatible alloyed AuPd nanoparticles with the capacity to elicit bioorthogonal depropargylations with high efficiency in biological media. We also show that the intracellular catalytic performance of these nanoalloys is significantly enhanced by protecting them following two different encapsulation methods. Encapsulation in mesoporous silica nanorods resulted in augmented catalyst reactivity, whereas the use of a biodegradable PLGA matrix increased nanoalloy delivery across the cell membrane. The functional potential of encapsulated AuPd was demonstrated by releasing the potent chemotherapy drug paclitaxel inside cancer cells. Nanoalloy encapsulation provides a novel methodology to develop nanoreactors capable of mediating new-to-life reactions in cells.


Assuntos
Nanotubos , Paládio , Ligas , Paclitaxel , Catálise
2.
Mol Pharm ; 17(9): 3314-3327, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32687366

RESUMO

Copolymers synthesized from acrylic acid and methacrylic acid used as gastroprotective and mucoadhesive enteric coatings have been used to prepare micro- (∼2 µm), submicro- (∼200 nm), and nanoparticles (∼20 nm) containing rifampicin (Rif) to obtain time-controlled drug release kinetics. Different particle sizes and drug release kinetics have been obtained using different synthesis conditions and fabrication techniques including the use of an electrosprayer and an interdigital microfabricated micromixer. The antimicrobial action of the encapsulated Rif has been demonstrated against Staphylococcus aureus ATCC 25923 and compared with the effect of the equivalent dose of the free macrolide antibiotic. At low concentrations, the encapsulated antibiotic showed superior antimicrobial activity than the free drug. The stability of the developed particles has been evaluated in vitro under simulated gastric and intestinal conditions. At the concentrations tested, a reduced cytotoxicity against different human cell lines was observed after analyzing their subcytotoxic doses and the influence on their cell cycle by flow cytometry. Drug release kinetics can be tuned by adjusting particle sizes, and it would be possible to reach the minimum inhibitory concentration or the minimum bactericidal concentration at different time points depending on the medical needs.


Assuntos
Antibacterianos/química , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos/efeitos dos fármacos , Polímeros/química , Administração Oral , Antibacterianos/farmacologia , Células CACO-2 , Linhagem Celular Tumoral , Preparações de Ação Retardada/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Excipientes/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Metacrilatos/química , Testes de Sensibilidade Microbiana/métodos , Nanopartículas/química , Tamanho da Partícula , Ácidos Polimetacrílicos/química , Rifampina/química , Rifampina/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos
3.
J Gene Med ; 19(6-7)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28632911

RESUMO

BACKGROUND: In the present study, we investigated the ability of polyethylene glycol (PEG) functionalized gold nanoparticles to function as nonviral vectors in the transfection of different cell lines, comparing them with commercial lipoplexes. METHODS: Positively-charged gold nanoparticles were synthesized using polyethylenimine (PEI) as a reducing and stabilizer agent and its cytotoxicity was reduced by its functionalization with PEG. We bound the nanoparticles to three plasmids with different sizes (4-40 kpb). Vector internalization was evaluated by confocal and electronic microscopy. Its transfection efficacy was studied by fluorescence microscopy and flow cytometry. The application of the resulting vector in gene therapy was evaluated indirectly using ganciclovir in HeLa cells transfected to express the herpes virus thymidine kinase. RESULTS: An appropriate ratio between the nitrogen from the PEI and the phosphorous from the phosphate groups of the DNA, together with a reduced size and an elevated electrokinetic potential, are responsible for an increased nanoparticle internalization and enhanced protein expression when carrying plasmids of up to 40 kbp (plasmid size close to the limit of the DNA-carrying capacity of viral vectors). Compared to a commercial transfection reagent, an equal or even higher expression of reporter genes (on HeLa and Hek293t) and a suicide effect on HeLa cells transfected with the herpes virus thymidine kinase gene were observed when using this novel nanoparticulated vector. CONCLUSIONS: Nonviral vectors based on gold nanoparticles covalently coupled with PEG and PEI can be used as efficient transfection reagents showing expression levels that are the same or greater than those obtained with commercially available lipoplexes.


Assuntos
Vetores Genéticos/química , Nanopartículas Metálicas , Transfecção/métodos , Técnicas de Transferência de Genes , Vetores Genéticos/síntese química , Ouro , Células HeLa , Humanos , Polietilenoglicóis , Polietilenoimina
4.
Pharm Res ; 34(6): 1296-1308, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28342057

RESUMO

PURPOSE: The aim of this work is to develop a scalable continuous system suitable for the formulation of polymeric nanoparticles using membrane-assisted nanoprecipitation. One of the hurdles to overcome in the use of nanostructured materials as drug delivery vectors is their availability at industrial scale. Innovation in process technology is required to translate laboratory production into mass production while preserving their desired nanoscale characteristics. METHODS: Membrane-assisted nanoprecipitation has been used for the production of Poly[(D,L lactide-co-glycolide)-co-poly ethylene glycol] diblock) (PLGA-PEG) nanoparticles using a pulsed back-and-forward flow arrangement. Tubular Shirasu porous glass membranes (SPG) with pore diameters of 1 and 0.2 µm were used to control the mixing process during the nanoprecipitation reaction. RESULTS: The size of the resulting PLGA-PEG nanoparticles could be readily tuned in the range from 250 to 400 nm with high homogeneity (PDI lower than 0.2) by controlling the dispersed phase volume/continuous phase volume ratio. Dexamethasone was successfully encapsulated in a continuous process, achieving an encapsulation efficiency and drug loading efficiency of 50% and 5%, respectively. The dexamethasone was released from the nanoparticles following Fickian kinetics. CONCLUSIONS: The method allowed to produce polymeric nanoparticles for drug delivery with a high productivity, reproducibility and easy scalability.


Assuntos
Dexametasona/química , Ácido Láctico/química , Nanopartículas/química , Polietilenoglicóis/química , Ácido Poliglicólico/química , Portadores de Fármacos , Liberação Controlada de Fármacos , Nanotecnologia , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Propriedades de Superfície
5.
Nanotechnology ; 25(30): 305101, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25006109

RESUMO

The removal of bacteria and other pathogenic micro-organisms from drinking water is usually carried out by boiling; however, when this is not a feasible option, a combination of treatment based on filtration and disinfection is recommended. In this work, we produced cellulose filters grafted with silver nanoparticles (AgNPs) and silver nanowires (AgNWs) by covalent attachment of separately prepared Ag nanostructures on thiol- and amine-modified commercially available cellulosic filters. Results obtained from scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and energy-dispersive X-ray spectroscopy (EDS) all revealed that such modified cellulose membranes contained large amounts of homogeneously dispersed AgNPs, whereas X-ray photoelectron spectroscopy (XPS) analysis demonstrated that the aforementioned nanostructures were immobilized on the membrane with a strong and stable covalent bond between the thiol or amine groups and the surface of the Ag nanofillers. This durable and robust covalent attachment facilitated outstanding suppression of the uncontrolled release of the nanostructures from the membranes, even under strong ultrasonication. Those membranes also demonstrated high permeance and antimicrobial activity in excess of 99.9% growth inhibition against Escherichia coli, which was used as a model of gram-negative coliform bacteria. Bacteria percolated throughout the tortuous silver-loaded filters, thus increasing the chances of contact between the Ag nanostructures (wires or nanoparticles) and the passing bacteria. Thus, we anticipate that these filters, with their high antibacterial activity and robustness, can be produced in a cost-effective manner and that they would be capable of producing affordable, clean, and safe drinking water in a short period of time without producing an uncontrolled silver release into the percolated water.


Assuntos
Antibacterianos/farmacologia , Celulose , Nanoestruturas , Prata/farmacologia , Esterilização/métodos , Microbiologia da Água , Purificação da Água/métodos , Escherichia coli/efeitos dos fármacos , Filtração/instrumentação , Nanoestruturas/ultraestrutura
6.
Int J Biol Macromol ; 271(Pt 1): 132563, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782313

RESUMO

Staphylococcus aureus possesses the ability to become pathogenic, leading to severe and life-threatening infections. Its methicillin-resistant variant MRSA has garnered high-priority status due to its increased morbidity and associated mortality. This emphasizes the urgency for novel anti-staphylococcal agents. The bacteriocin lysostaphin stands out for its remarkable bactericidal activity against S. aureus, including MRSA, outperforming conventional antibiotics. However, the clinical application of lysostaphin faces challenges, including enzymatic activity loss under physiological conditions and potential immunogenicity. This study introduces a novel approach by encapsulating lysostaphin within polylactic-co-glycolic acid (PLGA) nanoparticles, a biodegradable copolymer known for its biocompatibility and sustained drug release ability. The study assesses the antimicrobial activity of lysostaphin-loaded PLGA nanoparticles against different S. aureus strains, and we also used GFP-expressing S. aureus for facilitating its traceability in planktonic, biofilm, and intracellular infection models. The results showed the significant reduction in bacteria viability both in planktonic and biofilm states. The in vitro intracellular infection model demonstrated the significantly enhanced efficiency of the developed nanoparticles compared to the treatment with the free bacteriocin. This research presents lysostaphin encapsulation within PLGA nanoparticles and offers promising avenues for enhancing lysostaphin's therapeutic efficacy against S. aureus infections.


Assuntos
Antibacterianos , Biofilmes , Lisostafina , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Infecções Estafilocócicas , Staphylococcus aureus , Lisostafina/química , Lisostafina/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Nanopartículas/química , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Humanos , Portadores de Fármacos/química
7.
Nanotechnology ; 24(27): 275603, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23743565

RESUMO

Silver nanowires (AgNW) synthesized by a solvothermal method were incorporated into a polycarbonate matrix by a solution mixing procedure. Films with a thickness around 18 µm were obtained, showing a good distribution of the wires within the polymer matrix. The thermal stability of the polymer matrix increased significantly, with the main decomposition peak shifting up to 74 ° C for an AgNW loading of 4.35 wt%. The percolation threshold was obtained at very low AgNW content (0.04 wt%), and the composite electrical conductivity at the maximum loading (4.35 wt%) was 41.3 Ω cm. Excellent transparency was obtained at the percolation threshold, with negligible reduction in the transmittance of the polymer matrix (from 88.2 to 87.6% at 0.04 wt% loading of AgNW). In addition, the polymer matrix protected the silver nanowires from oxidation, as demonstrated by the XPS analysis.


Assuntos
Nanocompostos/química , Nanofios/química , Cimento de Policarboxilato/química , Prata/química , Condutividade Elétrica , Luz , Nanocompostos/ultraestrutura , Nanofios/ultraestrutura
8.
J Biomed Mater Res A ; 111(1): 88-105, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36205241

RESUMO

Mesenchymal stem cells have contributed to the continuous progress of tissue engineering and regenerative medicine. Adipose-derived stem cells (ADSC) possess many advantages compared to other origins including easy tissue harvesting, self-renewal potential, and fast population doubling time. As multipotent cells, they can differentiate into osteoblastic cell linages. In vitro bone models are needed to carry out an initial safety assessment in the study of novel bone regeneration therapies. We hypothesized that 3D bone-on-a-chip models containing ADSC could closely recreate the physiological bone microenvironment and promote differentiation. They represent an intermedium step between traditional 2D-in vitro and in vivo experiments facilitating the screening of therapeutic molecules while saving resources. Herein, we have differentiated ADSC for 7 and 14 days and used them to fabricate in vitro bone models by embedding the pre-differentiated cells in a 3D collagen matrix placed in a microfluidic chip. Osteogenic markers such as alkaline phosphatase activity, calcium mineralization, changes on cell morphology, and expression of specific proteins (bone sialoprotein 2, dentin matrix acidic phosphoprotein-1, and osteocalcin) were evaluated to determine cell differentiation potential and evolution. This is the first miniaturized 3D-in vitro bone model created from pre-differentiated ADSC embedded in a hydrogel collagen matrix which could be used for personalized bone tissue engineering.


Assuntos
Hidrogéis , Engenharia Tecidual , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Dispositivos Lab-On-A-Chip , Células Cultivadas , Diferenciação Celular , Osteogênese , Células-Tronco , Tecido Adiposo , Colágeno/metabolismo
9.
ACS Appl Mater Interfaces ; 15(34): 40213-40227, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37596966

RESUMO

The efficacy of antibody-functionalized poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs), prepared by nanoprecipitation, carrying rifampicin (RIF) against planktonic, sessile, and intracellular Staphylococcus aureus and Escherichia coli is reported here. A biotinylated anti-S. aureus polyclonal antibody, which binds to structural antigens of the whole bacterium, was functionalized on the surface of RIF-loaded PLGA-based NPs by using the high-affinity avidin-biotin complex. This general strategy allows the binding of commercially available biotinylated antibodies. Coculture models of S. aureus ATCC 25923 and Escherichia coli S17 were used to demonstrate the preferential selectivity of the antibody-functionalized NPs against the Gram-positive bacterium only. At 0.2 µg/mL, complete S. aureus eradication was observed for the antibody-functionalized RIF-loaded NPs, whereas only a 5-log reduction was observed for the nontargeted RIF-loaded NPs. S. aureus is a commensal facultative pathogen having part of its live cycle intracellularly in both phagocytic and nonphagocytic cells. Those intracellular bacterial persisters, named small colony variants, have been postulated as reservoirs of relapsed episodes of infection and consequent treatment failure. At 0.5 µg/mL, the RIF-loaded NPs reduced in 2-log intracellular S. aureus-infecting human macrophages. The ability of those antibody-functionalized nanoparticles to prevent biofilm formation or to reduce the bacterial burden in already-formed mature biofilms is also reported here using S. aureus and E. coli single and cocultured biofilms. In the prevention of S. aureus biofilm formation, the antibody-functionalized NPs exerted a superior inhibition of bacterial growth (up to 2 logs) compared to the nonfunctionalized ones. This study demonstrates the selectivity of the synthesized immunonanoparticles and their antimicrobial efficacy in different scenarios, including planktonic cultures, sessile conditions, and even against intracellular infective pathogens.


Assuntos
Antibacterianos , Escherichia coli , Humanos , Antibacterianos/farmacologia , Anticorpos , Bactérias , Macrófagos , Rifampina/farmacologia , Polímeros
10.
J Colloid Interface Sci ; 607(Pt 2): 1466-1477, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34592544

RESUMO

The on-demand administration of anaesthetic drugs can be a promising alternative for chronic pain management. To further improve the efficacy of drug delivery vectors, high drug loadings combined with a spatiotemporal control on the release can not only relief the pain according to patient's needs, but also improve the drawbacks of conventional burst release delivery systems. In this study, a hybrid nanomaterial was developed by loading bupivacaine nanocrystals (BNCs) into oligo(ethylene glycol) methyl ether methacrylate (OEGMA)-based thermoresponsive nanogels and coupling them to NIR-absorbing biodegradable copper sulphide nanoparticles (CuS NPs). Those CuS NPs were surface modified with polyelectrolytes using layer-by-layer techniques to be efficiently attached to the surface of nanogels by means of supramolecular interactions. The encapsulation of bupivacaine in the form of nanocrystals allowed to achieve CuS@BNC-nanogels having drug loadings as high as 65.5 wt%. The nanocrystals acted as long-lasting drug reservoirs, leading to an elevated localized drug content, which was useful for their application in prolonged pain relief. The CuS@BNC-nanogels exhibited favorable photothermal transducing properties upon NIR-light irradiation. The photothermal effect granted by the CuS NPs triggered the nano-crystallized drug release to be boosted by the collapse of the thermoresponsive nanogels upon heating. Remote control was achieved for on-demand release at a specific time and place, indicating their potential use as an externally activated triggerable drug-delivery system. Furthermore, cell viability tests and flow cytometry analysis were performed showing satisfactory cytocompatibility in the dose-ranging study having a subcytotoxic concentration of 0.05 mg/mL for CuS@BNC-nanogels. This remotely activated nanoplatform is a promising strategy for long-lasting controlled analgesia and a potential alternative for clinical pain management.


Assuntos
Nanopartículas , Preparações Farmacêuticas , Cobre , Doxorrubicina , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Nanogéis
11.
Macromol Biosci ; 22(5): e2100528, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35258161

RESUMO

The synthesis of polymeric nanoparticles from a block copolymer based on poly(ethylene glycol) and a polymethacrylate containing the nucleobase analog 2,6-diacylaminopyridine is optimized by microfluidics to obtain homogeneous spherical micelles. Loading and delivery properties are studied using naproxen as a model. The incorporation of a Pd precursor in the polymer organic solution fed into the micromixer allows the preparation of Pd(II) precursor-polymer hybrid systems and the subsequent reduction with CO leads to the in situ synthesis of Pd nanosheets inside of the hydrophobic core of the polymeric micelles. This methodology is highly efficient to yield all polymeric nanoparticles loaded with Pd nanosheets as detected by electron microscopy and energy-dispersive X-ray spectroscopy. The cell viability of these Pd nanosheets-containing polymeric nanoparticles is evaluated using five cell lines, showing a high cytocompatibility at the tested concentrations without detrimental effects in cell membrane and nuclei. Furthermore, the use of these hybrid polymeric nanoparticles as photothermal transductors is evaluated using near infrared as irradiation source as well as its application in photothermal therapy using different cell lines demonstrating a high efficiency in all cell cultures.


Assuntos
Micelas , Microfluídica , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Sistemas de Liberação de Medicamentos , Polietilenoglicóis/química , Polímeros/química , Polímeros/farmacologia
12.
Biomater Adv ; 136: 212791, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35929324

RESUMO

Tailoring surface properties by layer-by-layer (LBL) deposition directed on the construction of complex multilayer coatings with nanoscale precision enables the development of novel structures and devices with desired functional properties (i.e., osseointegration, bactericidal activity, biocorrosion protection). Herein, electrostatic self-assembly was applied to fabricate biopolymer-based coatings involving chitosan (CSM) and alginate (AL) enriched with caffeic acid (CA) on Ti-6Al-7Nb alloyed surfaces. The method of CA grafting onto the chitosan backbone (CA-g-CSM) as well as all used reagents for implant functionalization were chosen as green and sustainable approach. The final procedure of surface modification of the Ti-6Al-7Nb alloy consists of three steps: (i) chemical treatment in Piranha solution, (ii) plasma chemical-activation of the Ti alloy surface in a RF CVD (Radio Frequency Chemical Vapour Deposition) reactor using Ar, O2 and NH3 gaseous precursors, and (iii) a multi-step deposition of bio-functional coatings via dip-coating method. Corrosion tests have revealed that the resulting chitosan-based coatings, also these involving CA, block the specimen surface and hinder corrosion of titanium alloy. Furthermore, the antioxidant layers are characterized by beneficial level of roughness (Ra up ca. 350 nm) and moderate hydrophilicity (59°) with the dispersion part of conducive surface energy ca. 30 mJ/m2. Noteworthy, all coatings are biocompatible as the intact morphology of cultured eukaryotic cells ensured proper growth and proliferation, while exhibit bacteriostatic character, particularly in contact with Gram-(-) bacteria (E. coli). The study indicates that the applied simple sustainable strategy has contributed significantly to obtaining homogeneous, stable, and biocompatible while antibacterial biopolymer-based coatings.


Assuntos
Quitosana , Titânio , Ligas , Ácidos Cafeicos , Quitosana/química , Escherichia coli , Imersão , Eletricidade Estática , Titânio/química
13.
Colloids Surf B Biointerfaces ; 190: 110904, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32199259

RESUMO

Photopolymerization is a selective technique that takes advantage of light-sensitive molecules to initiate and propagate monomeric structures to render covalently bonded macromolecular materials structures known as polymers. Herein, we present a novel one-step microfluidic synthesis of customized hybrid-thermoresponsive Poly(N-isopropylacrylamide) (PNIPAm) based microparticles (MPs) containing plasmonic hollow gold nanoparticles (HGNPs) and bupivacaine (BVP) used as a model drug. Those hybrid microparticles were prepared using a flow-focusing microreactor coupled to a UV LED device built with a simple outer PTFE tubing and an inner flexible capillary. Different tubing characteristics and flow rate ratios were altered in order to control the size of the resulting microparticles. In addition, components such as monomer, crosslinker and photoinitiator concentrations, as well as LED intensity and irradiation time were tuned to obtain different MPs and their characteristics and polymerization rates were compared by Gel Permeation Chromatography (GPC). Thermoresponsive properties were analyzed and the presence of HGNPs was confirmed in light-activated triggered drug release applications. Bupivacaine loading and release studies were evaluated with the resulting hollow and solid microparticles (which were obtained depending on the polymerization rate used) and their temperature responsiveness was assessed using a NIR laser when HGNPs were present in the constructs. Finally, cytotoxicity studies, cell-cycle arrest and apoptotic induction were carried out to certify their suitability for further biomedical applications to be used as triggerable drug depots.


Assuntos
Resinas Acrílicas/síntese química , Bupivacaína/farmacologia , Sistemas de Liberação de Medicamentos , Técnicas Analíticas Microfluídicas , Temperatura , Resinas Acrílicas/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Liberação Controlada de Fármacos , Fibroblastos/efeitos dos fármacos , Ouro/química , Humanos , Raios Infravermelhos , Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/química , Técnicas Analíticas Microfluídicas/instrumentação , Tamanho da Partícula , Processos Fotoquímicos , Polimerização , Porosidade , Relação Estrutura-Atividade , Propriedades de Superfície
14.
Nanomedicine (Lond) ; 15(3): 219-234, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31774729

RESUMO

Aim: Developing hybrid poly(N-isopropylacrylamide)-based nanogels decorated with plasmonic hollow gold nanoparticles for on-demand drug delivery and their physico-chemical characterization, bupivacaine loading and release ability upon light irradiation, and in vitro cell viability. Materials & methods: Hollow gold nanoparticles were prepared by galvanic replacement reaction; poly(N-isopropylacrylamide)-based nanogels were synthesized via precipitation polymerization and their electrostatic coupling was accomplished using poly(allylamine hydrochloride) as cationic polyelectrolyte linker. Results & conclusion: Colloidal stability of the resulted hybrid nanovectors was demonstrated under physiological conditions together with their fast response and excellent heating efficiency after light stimulation, indicating their potential use as triggered drug-delivery vectors. Moreover, their influence on cell metabolism and cell cycle under subcytotoxic doses were studied showing excellent cytocompatibility.


Assuntos
Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos/efeitos dos fármacos , Nanopartículas Metálicas/química , Sobrevivência Celular/efeitos dos fármacos , Ouro/química , Humanos , Raios Infravermelhos , Nanopartículas Metálicas/uso terapêutico , Nanogéis/química , Polímeros/química , Polímeros/farmacologia
15.
ACS Appl Mater Interfaces ; 12(46): 51302-51313, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33147946

RESUMO

There is limited evidence indicating that drug-eluting dressings are clinically more effective than simple conventional dressings. To shed light on this concern, we have performed evidence-based research to evaluate the antimicrobial action of thymol (THY)-loaded antimicrobial dressings having antibiofilm forming ability, able to eradicate intracellular and extracellular pathogenic bacteria. We have used four different Staphylococcus aureus strains, including the ATCC 25923 strain, the Newman strain (methicillin-sensitive strain, MSSA) expressing the coral green fluorescent protein from the vector pCN47, and two clinical reference strains, Newman-(MSSA) and USA300-(methicillin-resistant strain), as traceable models of pathogenic bacteria commonly infecting skin and soft tissues. Compared to non-loaded dressings, THY-loaded polycaprolactone-based electrospun dressings were also able to eliminate pathogenic bacteria in coculture models based on infected murine macrophages. In addition, by using confocal microscopy and the conventional microdilution plating method, we corroborated the successful ability of THY in preventing also biofilm formation. Herein, we demonstrated that the use of wound dressings loaded with the natural monoterpenoid phenol derivative THY are able to eliminate biofilm formation and intracellular methicillin-sensitive S aureus more efficiently than with their corresponding THY-free counterparts.


Assuntos
Antibacterianos/química , Bandagens , Meticilina/química , Animais , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Linhagem Celular , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Meticilina/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Microscopia Confocal , Poliésteres/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Timol/química , Timol/farmacologia
16.
Nanomedicine (Lond) ; 15(12): 1189-1203, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32370602

RESUMO

Aim: First, to compare in vitro minimum inhibitory concentrations (MIC) of free cloxacillin and cloxacillin-containing nanoparticles (NP) against methicillin-susceptible (MSSA) and resistant Staphylococcus aureus (MRSA) and second, to assess NP antimicrobial activity against intracellular S. aureus. Methods: Poly(d,l-lactide-co-glycolide) acid (PLGA)-NP were loaded with cloxacillin and physico-chemically characterized. MICs were determined for reference strains Newman-(MSSA) and USA300-(MRSA). Murine alveolar macrophages were infected, and bacterial intracellular survival was assessed after incubating with free-cloxacillin or PLGA-cloxacillin-NP. Results & conclusion: For both isolates, MICs for antibiotic-loaded-NP were lower than those obtained with free cloxacillin, indicating that the drug encapsulation improves antimicrobial activity. A sustained antibiotic release was demonstrated when using the PLGA-cloxacillin-NP. When considering the lowest concentrations, the use of drug-loaded NP enabled a higher reduction of intracellular bacterial load.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cloxacilina , Camundongos , Testes de Sensibilidade Microbiana , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Staphylococcus aureus
17.
Int J Pharm ; 577: 119067, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31981705

RESUMO

Wound healing is a complex process that consists of three overlapping phases: inflammation, proliferation, and remodeling. A bacterial infection can increase inflammation and delay this process. Microorganisms are closely related to the innate immune system, such as macrophages and neutrophils, as they can start an inflammatory cascade. Essential oils play an important role in the inhibition and prevention of bacterial growth due to their ability to reduce antimicrobial resistance. The possibility to find a strategy that combines antimicrobial and anti-inflammatory properties is particularly appealing for wound healing. In this work, we showcase a variety of patches based on electrospun polycaprolactone (PCL) nanofibers loaded with natural compounds derived from essential oils, such as thymol (THY) and tyrosol (TYR), to achieve reduced inflammation. In addition, we compared the effect these essential oils have on activated macrophages when incorporated into the PCL patch. Specifically, we demonstrate that PCL-THY resulted in more efficient down-regulation of pro-inflammatory genes related to the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κb) pathway when compared to PCL-TYR and the combination patch containing TYR and THY (i.e., PCL-TYR-THY). Furthermore, PCL-THY displayed low affinity for cell attachment, which may hinder wound adherence and integration. Overall, our results indicate that THY-loaded patches could serve as promising candidates for the fabrication of dressings that incorporate bactericidal and anti-inflammatory properties while simultaneously avoiding the limitations of traditional antibiotic-loaded devices.


Assuntos
Anti-Inflamatórios/farmacologia , Nanofibras , Óleos Voláteis/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Anti-Inflamatórios/administração & dosagem , Linhagem Celular , Inflamação/tratamento farmacológico , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Óleos Voláteis/administração & dosagem , Poliésteres/química
18.
Eur J Pharm Biopharm ; 152: 327-339, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32473289

RESUMO

Wound healing is a complex and costly public health problem that should be timely addressed to achieve a rapid and adequate tissue repair avoiding or even eliminating potential pathogenic infection. Chronic infected non-healing wounds represent a serious concern for health care systems. Efficient wound dressings with tailored therapy having the best response and highest safety margin for the management of chronic non-healing wounds are still needed. The use of novel wound dressing materials has emerged as a promising tool to fulfil these requirements. In this work, asymmetric electrospun polycaprolactone (PCL)-based nanofibers (NFs) were decorated with electrosprayed poly(lactic-co-glycolic acid) microparticles (PLGA MPs) containing the natural antibacterial compound thymol (THY) in order to obtain drug eluting antimicrobial dressings having sustained release. The synthesized dressings successfully inhibited the in vitro growth of Staphylococcus aureus ATCC 25923, showing also at the same doses cytocompatibility on human dermal fibroblasts and keratinocyte cultures after treatment for 24 h, which was not observed when using free thymol. An in vivo murine excisional wound splinting model, followed by the experimental infection of the wounds with S. aureus and their treatment with the synthesized dressings, pointed to the reduction of the bacterial load in wounds after 7 days, though the total elimination of the infection was not reached. The findings indicated the relevance of the direct contact between the dressings and the bacteria, highlighting the need to tune their design considering the wound surface and the nature of the antimicrobial cargo contained.


Assuntos
Antibacterianos/farmacologia , Preparações de Ação Retardada/farmacologia , Timol/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/química , Bandagens , Linhagem Celular , Preparações de Ação Retardada/química , Fibroblastos/efeitos dos fármacos , Fibroblastos/microbiologia , Humanos , Masculino , Camundongos , Nanofibras/química , Poliésteres/química , Pele/efeitos dos fármacos , Pele/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Timol/química
19.
Acta Biomater ; 100: 306-315, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31568875

RESUMO

Non-invasiveness and relative safety of photothermal therapy, which enables local hyperthermia of target tissues using a near infrared (NIR) laser, has attracted increasing interest. Due to their biocompatibility, amenability of synthesis and functionalization, gold nanoparticles have been investigated as therapeutic photothermal agents. In this work, hollow gold nanoparticles (HGNP) were coated with poly-l-lysine through the use of COOH-Poly(ethylene glycol)-SH as a covalent linker. The functionalized HGNP, which peak their surface plasmon resonance at 800 nm, can bind thrombin. Thrombin-conjugated HGNP conduct in situ fibrin polymerization, facilitating the process of generating photothermal matrices. Interestingly, the metallic core of thrombin-loaded HGNP fragmentates at physiological temperature. During polymerization process, matrices prepared with thrombin-loaded HGNP were loaded with genetically-modified stem cells that harbour a heat-activated and ligand-dependent gene switch for regulating transgene expression. NIR laser irradiation of resulting cell constructs in the presence of ligand successfully triggered transgene expression in vitro and in vivo. STATEMENT OF SIGNIFICANCE: Current technological development allows synthesis of gold nanoparticles (GNP) in a wide range of shapes and sizes, consistently and at scale. GNP, stable and easily functionalized, show low cytotoxicity and high biocompatibility. Allied to that, GNP present optoelectronic properties that have been exploited in a range of biomedical applications. Following a layer-by-layer functionalization approach, we prepared hollow GNP coated with a positively charged copolymer that enabled thrombin conjugation. The resulting nanomaterial efficiently catalyzed the formation of fibrin hydrogels which convert energy of the near infrared (NIR) into heat. The resulting NIR-responsive hydrogels can function as scaffolding for cells capable of controlled gene expression triggered by optical hyperthermia, thus allowing the deployment of therapeutic gene products in desired spatiotemporal frameworks.


Assuntos
Fibrina/química , Ouro/química , Hidrogéis/química , Raios Infravermelhos , Nanopartículas Metálicas/química , Polimerização , Animais , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/ultraestrutura , Camundongos , Polímeros/química , Temperatura , Trombina/farmacologia , Transgenes
20.
Nanomedicine (Lond) ; 14(6): 707-726, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30734643

RESUMO

AIM: Production of Matryoshka-type gastroresistant microparticles containing antibiotic-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (NP) against Mycobacterium tuberculosis. MATERIALS & METHODS: The emulsification and evaporation methods were followed for the synthesis of PLGA-NPs and methacrylic acid-ethyl acrylate-based coatings to protect rifampicin from degradation under simulated gastric conditions. RESULTS & CONCLUSION: The inner antibiotic-loaded NPs here reported can be released under simulated intestinal conditions whereas their coating protects them from degradation under simulated gastric conditions. The encapsulation does not hinder the antituberculosis action of the encapsulated antibiotic rifampicin. A sustained antibiotic release could be obtained when using the drug-loaded encapsulated NPs. Compared with the administration of the free drug, a more effective elimination of M. tuberculosis was observed when applying the NPs against infected macrophages. The antibiotic-loaded PLGA-NPs were also able to cross an in vitro model of intestinal barrier.


Assuntos
Antibacterianos/farmacologia , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Antibacterianos/administração & dosagem , Antituberculosos/administração & dosagem , Transporte Biológico , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Microesferas , Tamanho da Partícula , Preparações Farmacêuticas/química , Rifampina/química , Rifampina/farmacologia , Estômago , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA