Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 196: 110536, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32234585

RESUMO

Rivers are important routes for sea-bound microplastics. Thus, this study investigated the occurrences and distributions of microplastics and polychlorinated biphenyls (PCBs) in sediment samples from the Qiantang River (QR) and Hangzhou Bay (HZ) and analyzed the correlation between microplastics and PCBs. A total of 15 sampling sites were selected, including eight from the QR (i.e., four in the Tonglu area and four in the Fuyang area), two from the Andong salt marsh (ASM; located in a hydrodynamic turning point of the HZ), and five from HZ. The mean microplastic abundance was highest in the QR, followed by HZ and ASM, with 0.23 ± 0.06, 0.18 ± 0.05, and 0.15 ± 0.03 particles/g sediment, respectively. Cluster analysis demonstrated that fragments and fibers may have originated from domestic sewage inputs to the QR. Spatially, mean PCB concentrations from Tonglu, Fuyang, and HZ were 1.47 ± 0.10, 1.65 ± 0.10, and 1.65 ± 0.09 ng/g sediment, respectively, which were higher than that from the ASM (1.13 ± 0.09 ng/g sediment). The vertical distributions (0-5 cm, 5-10 cm, and 10-15 cm) of microplastics in the sediments at Tonglu and Fuyang decreased with increasing depth, which was opposite to the depth trend of PCB concentrations. Micro-Fourier transform infrared spectroscopy analysis suggested that polyethylene was typically the dominant polymer, accounting for 60 ± 0.08% of the total suspected plastic particles. Microbeads and films showed considerable correlations with both highly and lesser chlorinated PCBs. Overall, our findings highlight the need for routine monitoring of microplastics in China in addition to measures for controlling plastic pollution on a national scale. Further study should ascertain specific sources of microplastics and analyze their adsorption capacity to organic pollutants.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Microplásticos/análise , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise , Baías , China , Rios/química
2.
Mar Environ Res ; 162: 105151, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32956972

RESUMO

This study investigated the physicochemical surface changes of various plastics caused by indigenous communities. The first invading microbes on plastics in 4 different aquatic communities including seawater, freshwater, marine sediments and lake sediments were developed in microcosm incubation experiments. A mixture of weathered plastics (PE, PS, PET) was incubated with different indigenous communities under their respective habitat simulations. All microbial communities were able to form populations on all plastic surfaces with time-dependent development. Biofilm also affected floatation of plastics and the communities on PE foam (PF) were dominated by genera affiliated with plastic and hydrocarbon degraders. The results showed that indigenous populations were able to degrade plastic pieces and utilize them as carbon sources where the weight of PF was reduced more effectively than PS and PET. Besides, carbonyl groups that were seen with FTIR on initial PF disappeared after microbial treatment along with signs of bioerosion on the plastic surface.


Assuntos
Microbiota , Plásticos , Bactérias , Biofilmes , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA