Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Transplant ; 20(6): 1527-1537, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31991042

RESUMO

Inflammatory responses associated with ischemia/reperfusion injury (IRI) play a central role in alloimmunity and transplant outcomes. A key event driving these inflammatory responses is the burst of reactive oxygen species (ROS), with hydrogen peroxide (H2 O2 ) as the most abundant form that occurs as a result of surgical implantation of the donor organ. Here, we used a syngeneic rat renal transplant and IRI model to evaluate the therapeutic properties of APP-103, a polyoxalate-based copolymer molecule containing vanillyl alcohol (VA) that exhibits high sensitivity and specificity toward the production of H2 O2 . We show that APP-103 is safe, and that it effectively promotes kidney function following IRI and survival of renal transplants. APP-103 reduces tissue injury and IRI-associated inflammatory responses in models of both warm ischemia (kidney clamping) and prolonged cold ischemia (syngeneic renal transplant). Mechanistically, we demonstrate that APP-103 exerts protective effects by specifically targeting the production of ROS. Our data introduce APP-103 as a novel, nontoxic, and site-activating therapeutic approach that effectively ameliorates the consequences of IRI in solid organ transplantation.


Assuntos
Transplante de Rim , Traumatismo por Reperfusão , Animais , Isquemia , Transplante de Rim/efeitos adversos , Polímeros , Ratos , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle
2.
J Cardiovasc Pharmacol Ther ; 26(3): 279-288, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33111565

RESUMO

Mortality and morbidity after cardiac arrest remain high due to ischemia/reperfusion (I/R) injury causing multi-organ damages, even after successful return of spontaneous circulation. We previously generated H2O2-activatable antioxidant nanoparticles formulated with copolyoxalate containing vanillyl alcohol (PVAX) to prevent I/R injury. In this study, we examined whether PVAX could effectively reduce organ damages in a rat model of whole-body ischemia/reperfusion injury (WBIR). To induce a cardiac arrest, 70µl/100 g body weight of 1 mmol/l potassium chloride was administered via the jugular venous catheter. The animals in both the vehicle and PVAX-treated groups had similar baseline blood pressure. After 5.5 minutes of cardiac arrest, animals were resuscitated via intravenous epinephrine followed by chest compressions. PVAX or vehicle was injected after the spontaneous recovery of blood pressure was noted, followed by the same dose of second injection 10 minutes later. After 24 hours, multiple organs were harvested for pathological, biochemical, molecular analyses. No significant difference on the restoration of spontaneous circulation was observed between vehicle and PVAX groups. Analysis of organs harvested 24 hours post procedure showed that whole body I/R significantly increased reactive oxygen species (ROS) generation, inflammatory markers, and apoptosis in multiple organs (heart, brain, and kidney). PVAX treatment effectively blocked ROS generation, reduced the elevation of pro-inflammatory cytokines, and decreased apoptosis in these organs. Taken together, our results suggest that PVAX has potent protective effect against WBIR induced multi-organ injury, possibly by blocking ROS-mediated cell damage.


Assuntos
Antioxidantes/farmacologia , Peróxido de Hidrogênio/farmacologia , Nanopartículas/química , Traumatismo por Reperfusão/prevenção & controle , Animais , Antioxidantes/administração & dosagem , Álcoois Benzílicos/química , Modelos Animais de Doenças , Feminino , Peróxido de Hidrogênio/administração & dosagem , Mediadores da Inflamação , Masculino , Insuficiência de Múltiplos Órgãos/prevenção & controle , Nanopartículas/administração & dosagem , Polímeros/química , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/antagonistas & inibidores
3.
Eur J Pharmacol ; 882: 173261, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32534073

RESUMO

Neuropeptide-Y (NPY) leads to angiogenesis and remodeling of the ischemic myocardium. The objective of this study is to assess the therapeutic potential of NPY in a model of acute myocardial ischemia using a nanoparticles delivery system targeted to tissue with oxidative stress. NPY3-36 was loaded onto copolyoxalate containing vanillyl alcohol (PVAX) using a double emulsification strategy. Adult C57BL/J6 mice (n = 49) were randomly divided into PVAX-NPY3-36 (n = 22), Vehicle (Saline) (n = 16), and Sham (n = 11) groups. The ischemia to left anterior descending artery was induced in PVAX-NPY3-36 or vehicle groups. The tissue was collected at the end of two weeks after assessing the functional and echocardiographic data. There was a significant decrease in infarction size and mortality in PVAX-NPY3-36 group compared to the Vehicle group (P = 0.01 and P = 0.05). On echocardiography, there was significant improvement in contractility and diastolic parameters (P = 0.01). On pressure-volume loop there was significant increase in stroke volume (P = 0.01), cardiac output (P = 0.01) and ventricular stroke work (P = 0.01) in the PVAX-NPY3-36 group. On Western blot analysis, there was a significant increase in pro-angiogenic factors Ang-1, TGF-ß, PDGF- ß and its receptors and VEGF in the ischemic tissue treated with PVAX-NPY3-36 as compared to Vehicle ischemic tissue (P = 0.01, P = 0.0003, and P < 0.05 respectively). It may be possible to have targeted delivery of labile neurotransmitters NPY3-36 to the ischemic myocardium using nanoparticle PVAX and achieving angiogenesis and significant functional improvement.


Assuntos
Álcoois Benzílicos/administração & dosagem , Cardiotônicos/administração & dosagem , Isquemia Miocárdica/tratamento farmacológico , Nanopartículas/administração & dosagem , Neovascularização Fisiológica/efeitos dos fármacos , Neuropeptídeo Y/administração & dosagem , Oxalatos/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Polímeros/administração & dosagem , Animais , Modelos Animais de Doenças , Hemodinâmica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Contração Miocárdica/efeitos dos fármacos , Isquemia Miocárdica/fisiopatologia , Função Ventricular Esquerda/efeitos dos fármacos
4.
J Am Heart Assoc ; 5(11)2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27930351

RESUMO

BACKGROUND: During myocardial ischemia/reperfusion (I/R), a large amount of reactive oxygen species (ROS) is produced. In particular, overproduction of hydrogen peroxide (H2O2) is considered to be a main cause of I/R-mediated tissue damage. We generated novel H2O2-responsive antioxidant polymer nanoparticles (PVAX and HPOX) that are able to target the site of ROS overproduction and attenuate the oxidative stress-associated diseases. In this study, nanoparticles were examined for their therapeutic effect on myocardial I/R injury. METHODS AND RESULTS: The therapeutic effect of nanoparticles during cardiac I/R was evaluated in mice. A single dose of PVAX (3 mg/kg) showed a significant improvement in both cardiac output and fraction shortening compared with poly(lactic-coglycolic acid) (PLGA) particle, a non-H2O2-activatable nanoparticle. PVAX also significantly reduced the myocardial infarction/area compared with PLGA (48.7±4.2 vs 14.5±2.1). In addition, PVAX effectively reduced caspase-3 activation and TUNEL-positive cells compared with PLGA. Furthermore, PVAX significantly decreased TNF-α and MCP-1 mRNA levels. To explore the antioxidant effect of PVAX by scavenging ROS, dihydroethidium staining was used as an indicator of ROS generation. PVAX effectively suppressed the generation of ROS caused by I/R, whereas a number of dihydroethidium-positive cells were observed in a group with PLGA I/R. In addition, PVAX significantly reduced the level of NADPH oxidase (NOX) 2 and 4 expression, which favors the reduction in ROS generation after I/R. CONCLUSIONS: Taken together, these results suggest that H2O2-responsive antioxidant PVAX has tremendous potential as a therapeutic agent for myocardial I/R injury.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Nanopartículas , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Caspase 3/efeitos dos fármacos , Caspase 3/metabolismo , Quimiocina CCL2/efeitos dos fármacos , Quimiocina CCL2/genética , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , NADPH Oxidase 2/efeitos dos fármacos , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/efeitos dos fármacos , NADPH Oxidase 4/metabolismo , Polímeros , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética
5.
Biomaterials ; 35(22): 5944-53, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24767791

RESUMO

Doxorubicin (DOX) is a commonly used anti-neoplastic agent but its clinical use is limited due to serious hepatic and cardiac side effects. DOX-induced toxicity is mainly associated with overproduction of reactive species oxygen (ROS) such as hydrogen peroxide (H2O2). We have recently developed H2O2-responsive anti-oxidant polymer, polyoxalate containing vanillyl alcohol (PVAX), which is designed to rapidly scavenge H2O2 and release vanillyl alcohol with anti-oxidant, anti-inflammatory and anti-apoptotic properties. In this study, we report that PVAX nanoparticles are novel therapeutic agents for treating DOX-induced cardiac and hepatic toxicity. Intraperitoneal injection of PVAX nanoparticles (4 mg/kg/day) resulted in significant inhibition in apoptosis in liver and heart of DOX-treated mice by suppressing the activation of poly (ADP ribose) polymerase 1 (PARP-1) and caspase-3. PVAX treatment also prevented DOX-induced cardiac dysfunction. Furthermore, survival rate (vehicle = 35% vs. PVAX = 75%; p < 0.05) was significantly improved in a PVAX nanoparticles-treated group compared with vehicle treated groups. Taken together, we anticipate that PVAX nanoparticles could be a highly specific and potent treatment modality in DOX-induced cardiac and hepatic toxicity.


Assuntos
Antioxidantes/uso terapêutico , Cardiomiopatias/tratamento farmacológico , Peróxido de Hidrogênio/metabolismo , Ácido Oxálico/uso terapêutico , Polímeros/uso terapêutico , Animais , Antioxidantes/química , Álcoois Benzílicos/química , Álcoois Benzílicos/uso terapêutico , Cardiomiopatias/induzido quimicamente , Doxorrubicina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Nanopartículas/uso terapêutico , Ácido Oxálico/química , Polímeros/química
6.
J Control Release ; 172(3): 1102-10, 2013 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-24096013

RESUMO

The main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury is the generation of high level of hydrogen peroxide (H2O2). In this study, we report a novel diagnostic and therapeutic strategy for I/R injury based on H2O2-activatable copolyoxalate nanoparticles using a murine model of hind limb I/R injury. The nanoparticles are composed of hydroxybenzyl alcohol (HBA)-incorporating copolyoxalate (HPOX) that, in the presence of H2O2, degrades completely into three known and safe compounds, cyclohexanedimethanol, HBA and CO2. HPOX effectively scavenges H2O2 in a dose-dependent manner and hydrolyzes to release HBA which exerts intrinsic antioxidant and anti-inflammatory activities both in vitro and in vivo models of hind limb I/R. HPOX nanoparticles loaded with fluorophore effectively and robustly image H2O2 generated in hind limb I/R injury, demonstrating their potential for bioimaging of H2O2-associated diseases. Furthermore, HPOX nanoparticles loaded with anti-apoptotic drug effectively release the drug payload after I/R injury, exhibiting their effectiveness for a targeted drug delivery system for I/R injury. We anticipate that multifunctional HPOX nanoparticles have great potential as H2O2 imaging agents, therapeutics and drug delivery systems for H2O2-associated diseases.


Assuntos
Antioxidantes/uso terapêutico , Álcoois Benzílicos/uso terapêutico , Peróxido de Hidrogênio/metabolismo , Ácido Oxálico/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Antioxidantes/administração & dosagem , Antioxidantes/química , Álcoois Benzílicos/administração & dosagem , Álcoois Benzílicos/química , Linhagem Celular , Peróxido de Hidrogênio/análise , Masculino , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanopartículas/uso terapêutico , Imagem Óptica , Ácido Oxálico/administração & dosagem , Ácido Oxálico/química , Polímeros/administração & dosagem , Polímeros/química , Polímeros/uso terapêutico , Traumatismo por Reperfusão/diagnóstico , Traumatismo por Reperfusão/metabolismo
7.
Sci Rep ; 3: 2233, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23868607

RESUMO

The main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury is the overproduction of reactive oxygen species (ROS). Hydrogen peroxide (H2O2), the most abundant form of ROS produced during I/R, causes inflammation, apoptosis and subsequent tissue damages. Here, we report H2O2-responsive antioxidant nanoparticles formulated from copolyoxalate containing vanillyl alcohol (VA) (PVAX) as a novel I/R-targeted nanotherapeutic agent. PVAX was designed to incorporate VA and H2O2-responsive peroxalate ester linkages covalently in its backbone. PVAX nanoparticles therefore degrade and release VA, which is able to reduce the generation of ROS, and exert anti-inflammatory and anti-apoptotic activity. In hind-limb I/R and liver I/R models in mice, PVAX nanoparticles specifically reacted with overproduced H2O2 and exerted highly potent anti-inflammatory and anti-apoptotic activities that reduced cellular damages. Therefore, PVAX nanoparticles have tremendous potential as nanotherapeutic agents for I/R injury and H2O2-associated diseases.


Assuntos
Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Nanopartículas/metabolismo , Polímeros/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Antioxidantes/administração & dosagem , Antioxidantes/química , Apoptose , Álcoois Benzílicos/química , Linhagem Celular , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanopartículas/ultraestrutura , Polímeros/administração & dosagem , Polímeros/química , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA