Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 9(15): e2200872, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35343104

RESUMO

Deferoxamine (DFO) is an FDA-approved iron-chelating agent which shows good therapeutic efficacy, however, its short blood half-life presents challenges such as the need for repeated injections or continuous infusions. Considering the lifelong need of chelating agents for iron overload patients, a sustained-release formulation that can reduce the number of chelator administrations is essential. Here, injectable hydrogel formulations prepared by integrating crosslinked hyaluronic acid into Pluronic F127 for an extended release of DFO nanochelators are reported. The subcutaneously injected hydrogel shows a thermosensitive sol-gel transition at physiological body temperature and provides a prolonged release of renal clearable nanochelators over 2 weeks, resulting in a half-life 47-fold longer than that of the nanochelator alone. In addition, no chronic toxicity of the nanochelator-loaded hydrogel is confirmed by biochemical and histological analyses. This injectable hydrogel formulation with DFO nanochelators has the potential to be a promising formulation for the treatment of iron overload disorders.


Assuntos
Hidrogéis , Sobrecarga de Ferro , Preparações de Ação Retardada/uso terapêutico , Humanos , Ferro , Sobrecarga de Ferro/tratamento farmacológico , Poloxâmero/uso terapêutico
2.
Adv Healthc Mater ; 9(1): e1901223, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794153

RESUMO

Passive targeting of large nanoparticles by the enhanced permeability and retention (EPR) effect is a crucial concept for solid tumor targeting in cancer nanomedicine. There is, however, a trade-off between the long-term blood circulation of nanoparticles and their nonspecific background tissue uptake. To define this size-dependent EPR effect, near-infrared fluorophore-conjugated polyethylene glycols (PEG-ZW800s; 1-60 kDa) are designed and their biodistribution, pharmacokinetics, and renal clearance are evaluated in tumor-bearing mice. The targeting efficiency of size-variant PEG-ZW800s is investigated in terms of tumor-to-background ratio (TBR). Interestingly, smaller sized PEGs (≤20 kDa, 12 nm) exhibit significant tumor targeting with minimum to no nonspecific uptakes, while larger sized PEGs (>20 kDa, 13 nm) accumulate highly in major organs, including the lungs, liver, and pancreas. Among those tested, 20 kDa PEG-ZW800 exhibits the highest TBR, while excreting unbound molecules to the urinary bladder. This result lays a foundation for engineering tumor-targeted nanoparticles and therapeutics based on the size-dependent EPR effect.


Assuntos
Antineoplásicos/química , Corantes Fluorescentes/química , Nanopartículas/química , Polietilenoglicóis/química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Área Sob a Curva , Meia-Vida , Células HeLa , Humanos , Rim/metabolismo , Masculino , Camundongos , Camundongos Nus , Peso Molecular , Nanomedicina , Nanopartículas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Tamanho da Partícula , Curva ROC , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA