Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 132(18)2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31444287

RESUMO

Grouped cells often leave large cell colonies in the form of narrow multicellular streams. However, it remains unknown how collective cell streaming exploits specific matrix properties, like stiffness and fiber length. It is also unclear how cellular forces, cell-cell adhesion and velocities are coordinated within streams. To independently tune stiffness and collagen fiber length, we developed new hydrogels and discovered invasion-like streaming of normal epithelial cells on soft substrates coated with long collagen fibers. Here, streams arise owing to a surge in cell velocities, forces, YAP activity and expression of mesenchymal marker proteins in regions of high-stress anisotropy. Coordinated velocities and symmetric distribution of tensile and compressive stresses support persistent stream growth. Stiff matrices diminish cell-cell adhesions, disrupt front-rear velocity coordination and do not promote sustained fiber-dependent streaming. Rac inhibition reduces cell elongation and cell-cell cooperation, resulting in a complete loss of streaming in all matrix conditions. Our results reveal a stiffness-modulated effect of collagen fiber length on collective cell streaming and unveil a biophysical mechanism of streaming governed by a delicate balance of enhanced forces, monolayer cohesion and cell-cell cooperation.This article has an associated First Person interview with the first authors of the paper.


Assuntos
Adesão Celular/fisiologia , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Resinas Acrílicas/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Western Blotting , Adesão Celular/efeitos dos fármacos , Colágeno/química , Colágeno/farmacologia , Matriz Extracelular/efeitos dos fármacos , Imunofluorescência , Humanos , Hidrogéis/química , Células MCF-7 , Mecanotransdução Celular/efeitos dos fármacos , Mecanotransdução Celular/fisiologia , Microscopia de Força Atômica , Microscopia Confocal , Microscopia Eletrônica de Varredura , Oxirredução , Compostos de Piridínio/química , Reologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
2.
Nanotechnology ; 25(48): 485101, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25379989

RESUMO

There is increasing interest in the use of nanoparticles as fillers in polymer matrices to develop biomaterials which mimic the mechanical, chemical and electrical properties of bone tissue for orthopaedic applications. The objective of this study was to prepare poly(ϵ-caprolactone) (PCL) nanocomposites incorporating three different perovskite ceramic nanoparticles, namely, calcium titanate (CT), strontium titanate (ST) and barium titanate (BT). The tensile strength and modulus of the composites increased with the addition of nanoparticles. Scanning electron microscopy indicated that dispersion of the nanoparticles scaled with the density of the ceramics, which in turn played an important role in determining the enhancement in mechanical properties of the composite. Dielectric spectroscopy revealed improved permittivity and reduced losses in the composites when compared to neat PCL. Nanofibrous scaffolds were fabricated via electrospinning. Induction coupled plasma-optical emission spectroscopy indicated the release of small quantities of Ca(+2), Sr(+2), Ba(+2) ions from the scaffolds. Piezo-force microscopy revealed that BT nanoparticles imparted piezoelectric properties to the scaffolds. In vitro studies revealed that all composites support osteoblast proliferation. Expression of osteogenic genes was enhanced on the nanocomposites in the following order: PCL/CT > PCL/ST > PCL/BT > PCL. This study demonstrates that the use of perovskite nanoparticles could be a promising technique to engineer better polymeric scaffolds for bone tissue engineering.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Compostos de Cálcio/farmacologia , Cerâmica/farmacologia , Nanopartículas/administração & dosagem , Óxidos/farmacologia , Polímeros/farmacologia , Titânio/farmacologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Compostos de Cálcio/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cerâmica/química , Teste de Materiais/métodos , Camundongos , Nanocompostos/administração & dosagem , Nanocompostos/química , Nanopartículas/química , Osteoblastos/efeitos dos fármacos , Óxidos/química , Poliésteres/química , Poliésteres/farmacologia , Polímeros/química , Estrôncio/química , Estrôncio/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA