Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Langmuir ; 40(22): 11610-11625, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38760180

RESUMO

Low solubility and chemical instability are the main problems with insoluble bioactives. Lignin, with its exceptional biological properties and amphiphilicity, holds promise as a delivery system material. In this study, glycerol esters were incorporated into alkali lignin (AL) through ether and ester bonds, resulting in the successful synthesis of three hydrophobically modified alkali lignins (AL-OA, AL-OGL, and AL-SAN-OGL). Subsequently, lignin composite nanoparticles (LNPs@BC) encapsulating ß-carotene were prepared using antisolvent and sonication techniques. The encapsulation rates were determined to be 37.69 ± 2.21%, 84.01 ± 5.55%, 83.82 ± 5.23%, and 83.11 ± 5.85% for LNP@BC-1, LNP@BC-2, LNP@BC-3, and LNP@BC-4, respectively, with AL, AL-OA, AL-OGL, and AL-SAN-OGL serving as the wall materials under optimized preparation conditions. The antioxidant properties and UV-absorbing capacity of the four lignins were characterized, demonstrating their efficacy in enhancing the oxygen and photostability of ß-carotene. Following 6 h of UV irradiation, LNP@BC-4 exhibited a retention rate of 83.03 ± 2.85% for ß-carotene, while storage under light-protected conditions at 25 °C for 7 days retained 73.33 ± 7.62% of ß-carotene. Furthermore, the encapsulated ß-carotene demonstrated enhanced thermal and storage stability. In vitro release experiments revealed superior stability of LNPs@BC in simulated gastric fluid (SGF), with ß-carotene retention exceeding 77% in both LNP@BC-3 and LNP@BC-4. LNP@BC-4 exhibited the highest bioaccessibility in simulated intestinal fluid (SIF) at 46.96 ± 0.80%, that LNP@BC-1 only achieved 10.87 ± 0.90%. The enzymatic responsiveness of AL-OGL and AL-SAN-OGL was confirmed. Moreover, LNPs@BC exhibited no cytotoxicity toward L929 cells and demonstrated excellent hemocompatibility. In summary, this study introduces a novel enzyme-responsive modified lignin that has promising applications in the fields of food, biomedicine, and animal feed.


Assuntos
Lignina , Lipase , Nanopartículas , beta Caroteno , Lignina/química , Nanopartículas/química , beta Caroteno/química , Lipase/química , Lipase/metabolismo , Solubilidade , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/síntese química , Animais , Camundongos , Portadores de Fármacos/química
2.
Mikrochim Acta ; 189(8): 304, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915355

RESUMO

Identifying the progress of kidney injury may aid the effective treatment and intervention. Herein, we developed a fluorescent biosensor array for instantaneous and accurate identification of the kidney injury progression via "doubled" signals. The multichannel biosensor array consisted of polydopamine-polyethyleneimine (PDA-PEI) and multicolor-labelled different length of DNAs including AAAAA-Cyanine7 (5A-Cy7), AAAAAAAAAA-Texas Red (10A-Texas Red), and AAAAAAAAAAAAAAAAAAAA-VIC (20A-VIC). Facing to the variety of protein in urine with alterable charge accompanied with different progress of kidney injury, the composition of urine replaces the DNA signal molecules, forming their special fluorescence patterns. Taking the size of protein into consideration, the original three variables induced by the protein charge were extended to six variables induced by the two factors of protein particle size and charge difference, which could provide a more accurate strategy to identify the progress of kidney injury. Notably, this strategy not only opened up new perspective for identification the progress of kidney injury via the size and charge of urine protein, but also improved the resolving power of sensor array by increasing the number of sensor elements for extending their potential application to various diseases.


Assuntos
Técnicas Biossensoriais , Corantes Fluorescentes , Rim , Polietilenoimina , Proteínas
3.
Analyst ; 145(10): 3620-3625, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32338259

RESUMO

Early detection of acute kidney injury (AKI) is important, as early intervention and treatment can prevent further kidney injury and improve kidney health. Neutrophil gelatinase-associated lipocalin (NGAL) has emerged as the earliest and promising non-invasive biomarker of AKI in urine, and has been used as a new predictive biomarker of AKI in the bench-to-bedside journey. In this work, a nanocomplex composed of a polydopamine nanosphere (PDANS) and a fluorophore-labelled aptamer has been constructed for the detection of NGAL using a DNase I-assisted recycling amplification strategy. After the addition of NGAL, the fluorescence intensity increases linearly over the NGAL concentration range from 12.5 to 400 pg mL-1. The limit of detection of this strategy is found to be 6.25 pg mL-1, which is almost 5 times lower than that of the method that does not involve DNase I. The process can be completed within 1 h, indicating a fast fluorescence response. Furthermore, the method using the nanocomplex coupled with DNase I has been successfully utilized for the detection of NGAL in the urine from cisplatin-induced AKI and five-sixths nephrectomized mice, demonstrating its promising ability for the early prediction of AKI. This method also demonstrates the protective effect of the Huangkui capsule on AKI, and provides an effective way to screen potentially protective drugs for renal disease.


Assuntos
Injúria Renal Aguda/diagnóstico , Aptâmeros de Nucleotídeos/metabolismo , Desoxirribonuclease I/metabolismo , Indóis/química , Limite de Detecção , Lipocalina-2/metabolismo , Nanosferas/química , Polímeros/química , Aptâmeros de Nucleotídeos/genética , Linhagem Celular , Humanos , Técnicas de Amplificação de Ácido Nucleico , Fatores de Tempo
4.
Anal Chim Acta ; 1160: 338447, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-33894967

RESUMO

Drug-induced kidney injury causes structural or functional abnormalities of kidney, seriously affecting clinical practice and drug discovery. However, rapid and effective identification of nephrotoxic drug mechanisms is yet a challenging task arising from the complexity and diversity of various nephrotoxic mechanisms. Herein, we have constructed a polydopamine-polyethyleneimine/quantum dots sensor to instantaneously read out the nephrotoxic drugs mechanisms based on the disparate cell surface phenotypes. Cell surface components induced by multiple nephrotoxic drugs can change the fluorescence emission of multicolor quantum dots, generating their corresponding fluorescent fingerprints. The fluorescence response signatures induced by different nephrotoxic agents are gained with 84% accuracy via linear discriminant analysis. Furthermore, taking the time-toxicity relationship into consideration, dynamic fluorescent fingerprint is obtained through continuous monitoring the progress of renal cell damage, achieving 100% precise classification for nephrotoxic mechanisms of four types of antibiotics. Notably, the fluorescent fingerprint-based high-throughput sensor has been demonstrated by successfully distinguishing nephrotoxic drugs in seconds, employing a promising protocol to discriminate the specific mechanism of nephrotoxic drugs, as well as drug safety evaluation.


Assuntos
Preparações Farmacêuticas , Pontos Quânticos , Antibacterianos , Fluorescência , Polietilenoimina , Pontos Quânticos/toxicidade , Espectrometria de Fluorescência
5.
ACS Sens ; 5(4): 1119-1125, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32192327

RESUMO

Matrix metalloproteinase-9 (MMP-9) and matrix metalloproteinase-2 (MMP-2) play important roles in the progression of renal interstitial fibrosis (RIF). There is an increasing demand to construct a novel method for the simultaneous detection of MMP-9 and MMP-2 to monitor the progression of RIF. Herein, a strategy based on the nanoplatform composed of the polydopamine nanosphere and fluorescence-labeled aptamers is developed to simultaneously detect MMP-9 and MMP-2 with DNase-I-assisted recycling signal amplification. In the light of tracing the recovered fluorescence intensity at 520 and 610 nm upon adding MMP-9 and MMP-2, the increased fluorescence intensity is linear to the different concentrations of MMP-9 and MMP-2 with the detection limits of 9.6 and 25.6 pg/mL for MMP-9 and MMP-2, respectively. More intriguingly, the results of unilateral ureteral obstruction mice show that the concentration of MMP-9 in urine is increased with the extension of ligation time while the concentration of MMP-2 is reversed, indicating that the ratio of MMP-9 to MMP-2 could be considered as the potential urinary biomarker to evaluate the progress of RIF and the therapeutic effect of Huangkui capsule on RIF. Therefore, this study provides a paradigmatic strategy for the simultaneous detection of the dual markers of RIF, which is promising for the auxiliary clinical diagnosis and assessment of the prognosis of chronic kidney disease.


Assuntos
Desoxirribonuclease I/genética , Indóis/química , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Nanosferas/química , Polímeros/química , Insuficiência Renal Crônica/genética , Animais , Humanos , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA