Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
medRxiv ; 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37090669

RESUMO

Background: By age five approximately one-fifth of children have early childhood caries (ECC). Both the oral microbiome and host genetics are thought to influence susceptibility. Whether the oral microbiome modifies genetic susceptibility to ECC has not been tested. We test whether the salivary bacteriome modifies the association of a polygenic score (PGS, a score derived from genomic data that summarizes genetic susceptibility to disease) for primary tooth decay on ECC in the Center for Oral Health Research in Appalachia 2 longitudinal birth cohort. Methods: Children were genotyped using the Illumina Multi-Ethnic Genotyping Array and underwent annual dental examinations. We constructed a PGS for primary tooth decay using weights from an independent, genome-wide association meta-analysis. Using Poisson regression, we tested for associations between the PGS (high versus low) and ECC incidence, adjusting for demographic characteristics (n=783). An incidence-density sampled subset of the cohort (n=138) had salivary bacteriome data at 24- months of age. We tested for effect modification of the PGS on ECC case status by salivary bacterial community state type (CST). Results: By 60-months, 20.69% of children had ECC. High PGS was not associated with an increased rate of ECC (incidence-rate ratio:1.09 (95% confidence interval (CI): 0.83, 1.42)). However, having a cariogenic salivary bacterial CST at 24-months was associated with ECC (odds ratio (OR): 7.48 (95%CI: 3.06, 18.26)), which was robust to PGS adjustment. An interaction existed between the salivary bacterial CST and the PGS on the multiplicative scale (P= 0.04). The PGS was associated with ECC (OR: 4.83 (95% CI: 1.29, 18.17)) only among individuals with a noncariogenic salivary bacterial CST (n=70). Conclusions: Genetic causes of caries may be harder to detect when not accounting for cariogenic oral microbiomes. As certain salivary bacterial CSTs increased ECC-risk across genetic-risk strata, preventing colonization of cariogenic microbiomes would be universally beneficial.

2.
Epigenetics ; 18(1): 2222244, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37300819

RESUMO

The prevalence and severity of many diseases differs by sex, potentially due to sex-specific patterns in DNA methylation. Autosomal sex-specific differences in DNA methylation have been observed in cord blood and placental tissue but are not well studied in saliva or in diverse populations. We sought to characterize sex-specific DNA methylation on autosomal chromosomes in saliva samples from children in the Future of Families and Child Wellbeing Study, a multi-ethnic prospective birth cohort containing an oversampling of Black, Hispanic and low-income families. DNA methylation from saliva samples was analysed on 796 children (50.6% male) at both ages 9 and 15 with DNA methylation measured using the Illumina HumanMethylation 450k array. An epigenome-wide association analysis of the age 9 samples identified 8,430 sex-differentiated autosomal DNA methylation sites (P < 2.4 × 10-7), of which 76.2% had higher DNA methylation in female children. The strongest sex-difference was in the cg26921482 probe, in the AMDHD2 gene, with 30.6% higher DNA methylation in female compared to male children (P < 1 × 10-300). Treating the age 15 samples as an internal replication set, we observed highly consistent results between the ages 9 and 15 measurements, indicating stable and replicable sex-differentiation. Further, we directly compared our results to previously published DNA methylation sex differences in both cord blood and saliva and again found strong consistency. Our findings support widespread and robust sex-differential DNA methylation across age, human tissues, and populations. These findings help inform our understanding of potential biological processes contributing to sex differences in human physiology and disease.


Assuntos
Metilação de DNA , Epigênese Genética , Criança , Humanos , Feminino , Masculino , Gravidez , Adolescente , Saliva , Saúde da Criança , Estudos Prospectivos , Estudo de Associação Genômica Ampla/métodos , Placenta , Ilhas de CpG
3.
Microbiome ; 10(1): 240, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36567334

RESUMO

BACKGROUND: Early childhood caries (ECC)-dental caries (cavities) occurring in primary teeth up to age 6 years-is a prevalent childhood oral disease with a microbial etiology. Streptococcus mutans was previously considered a primary cause, but recent research promotes the ecologic hypothesis, in which a dysbiosis in the oral microbial community leads to caries. In this incident, density sampled case-control study of 189 children followed from 2 months to 5 years, we use the salivary bacteriome to (1) prospectively test the ecological hypothesis of ECC in salivary bacteriome communities and (2) identify co-occurring salivary bacterial communities predicting future ECC. RESULTS: Supervised classification of future ECC case status using salivary samples from age 12 months using bacteriome-wide data (AUC-ROC 0.78 95% CI (0.71-0.85)) predicts future ECC status before S. mutans can be detected. Dirichlet multinomial community state typing and co-occurrence network analysis identified similar robust and replicable groups of co-occurring taxa. Mean relative abundance of a Haemophilus parainfluenzae/Neisseria/Fusobacterium periodonticum group was lower in future ECC cases (0.14) than controls (0.23, P value < 0.001) in pre-incident visits, positively correlated with saliva pH (Pearson rho = 0.33, P value < 0.001) and reduced in individuals who had acquired S. mutans by the next study visit (0.13) versus those who did not (0.20, P value < 0.01). In a subset of whole genome shotgun sequenced samples (n = 30), case plaque had higher abundances of antibiotic production and resistance gene orthologs, including a major facilitator superfamily multidrug resistance transporter (MFS DHA2 family PBH value = 1.9 × 10-28), lantibiotic transport system permease protein (PBH value = 6.0 × 10-6) and bacitracin synthase I (PBH value = 5.6 × 10-6). The oxidative phosphorylation KEGG pathway was enriched in case plaque (PBH value = 1.2 × 10-8), while the ABC transporter pathway was depleted (PBH value = 3.6 × 10-3). CONCLUSIONS: Early-life bacterial interactions predisposed children to ECC, supporting a time-dependent interpretation of the ecological hypothesis. Bacterial communities which assemble before 12 months of age can promote or inhibit an ecological succession to S. mutans dominance and cariogenesis. Intragenera competitions and intergenera cooperation between oral taxa may shape the emergence of these communities, providing points for preventive interventions. Video Abstract.


Assuntos
Cárie Dentária , Microbiota , Saliva , Streptococcus mutans , Criança , Pré-Escolar , Humanos , Lactente , Estudos de Casos e Controles , Cárie Dentária/epidemiologia , Cárie Dentária/microbiologia , Proteínas de Membrana Transportadoras , Microbiota/genética , Saliva/microbiologia , Streptococcus mutans/genética , Streptococcus mutans/isolamento & purificação
4.
Epigenetics ; 17(13): 2223-2240, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35980258

RESUMO

Prenatal maternal smoking is associated with low birthweight, neurological disorders, and asthma in exposed children. DNA methylation signatures can function as biomarkers of prenatal smoke exposure. However, the robustness of DNA methylation signatures across child ages, genetic ancestry groups, or tissues is not clear. Using coefficients from a meta-analysis of prenatal smoke exposure and DNA methylation in newborn cord blood, we created polymethylation scores of saliva DNA methylation from children at ages 9 and 15 in the Fragile Families and Child Wellbeing study. In the full sample at age 9 (n = 753), prenatal smoke exposure was associated with a 0.51 (95%CI: 0.35, 0.66) standard deviation higher polymethylation score. The direction and magnitude of the association was consistent in European and African genetic ancestry samples. In the full sample at age 15 (n = 747), prenatal smoke exposure was associated with a 0.48 (95%CI: 0.32, 0.63) standard deviation higher polymethylation score, and the association was attenuated among the European and Admixed-Latin genetic ancestry samples. The polymethylation score classified prenatal smoke exposure accurately (AUC age 9 = 0.77, age 15 = 0.76). Including the polymethylation score increased the AUC of base model covariates by 5 (95% CI: (2.1, 7.2)) percentage points, while including a single candidate site in the AHRR gene did not (P-value = 0.19). Polymethylation scores for prenatal smoking were portable across genetic ancestries and more accurate than an individual DNA methylation site. Polymethylation scores from saliva samples could serve as robust and practical biomarkers of prenatal smoke exposure.


Assuntos
Metilação de DNA , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Criança , Recém-Nascido , Feminino , Humanos , Adolescente , Fumaça , Epigênese Genética , Saliva , Saúde da Criança , Efeitos Tardios da Exposição Pré-Natal/genética , Exposição Materna , Biomarcadores
5.
Sci Rep ; 10(1): 14640, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887894

RESUMO

Salivary microbiome composition can change following exposure to environmental toxicants, e.g., heavy metals. We hypothesized that levels of salivary nutrients and metals would correlate with salivary microbiome composition and be associated with dental decay. Here we assess the salivary concentrations of 5 essential minerals (cobalt, copper, manganese, molybdenum, and zinc), 4 metals with some evidence of normal physiological function (chromium, nickel, tungsten, and vanadium), and 12 with known toxicity (antimony, arsenic, barium, beryllium, cadmium, cesium, lead, mercury, platinum, thallium, tin, and uranium), and their associations with salivary microbiome composition and dental decay in 61 children and adults. 16 metals were detected in 54% of participants; 8 were found in all. Marked differences in salivary bacterial taxa were associated with levels of antimony, arsenic, and mercury, after adjusting for multiple testing. Further, antimony levels were associated with the presence of decayed teeth. Thus, salivary metal levels, even at low concentrations, may impact oral health.


Assuntos
Arsênio/análise , Berílio/análise , Cárie Dentária/microbiologia , Microbioma Gastrointestinal/genética , Metais Pesados/análise , Saliva/química , Saliva/microbiologia , Adolescente , Adulto , Arsênio/efeitos adversos , Criança , DNA Bacteriano/genética , Exposição Ambiental/análise , Feminino , Humanos , Masculino , Metais Pesados/efeitos adversos , Pessoa de Meia-Idade , Saúde Bucal , RNA Ribossômico 16S/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA