Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Periodontal Res ; 58(4): 813-826, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37221815

RESUMO

BACKGROUND/AIMS: Hyperglycemia in diabetes is closely associated with periodontal disease progression. This study aimed to investigate the effect of hyperglycemia on the barrier function of gingival epithelial cells as a cause of hyperglycemia-exacerbated periodontitis in diabetes mellitus. METHODS: The abnormal expression of adhesion molecules in gingival epithelium in diabetes was compared between db/db and control mice. To study the effects of hyperglycemia on interepithelial cell permeability, the mRNA and protein expressions of adhesion molecules were investigated using a human gingival epithelial cell line (epi 4 cells) in the presence of either 5.5 mM glucose (NG) or 30 mM glucose (HG). Immunocytochemical and histological analyses were performed. We also studied HG-related intracellular signaling to assess abnormal adhesion molecule expression in the cultured epi 4 cells. RESULTS: The results of the proteomic analysis implied the abnormal regulation of cell-cell adhesion, and mRNA and protein expression assessments revealed the significant downregulation of Claudin1 expression in the gingival tissues of db/db mice (p < .05 vs control). Similarly, the mRNA and protein expressions of adhesion molecules were lower in epi 4 cells cultured under HG conditions than in those cultured under NG conditions (p < .05). Three-dimensional culture and transmission electron microscopy revealed reduced thickness of the epithelial cell layers with no flattened apical cells and heterogeneously arranged intercellular spaces among adjacent epi 4 cells under the HG. These results were consistent with the increased permeability of epi 4 cells under the HG relative to that of cells under the NG. This abnormal expression of intercellular adhesion molecules under the HG was related to the increased expression of receptors for advanced glycation end products (AGEs) and oxidative stress relative to that seen under the NG, along with stimulation of ERK1/2 phosphorylation in epi 4 cells. CONCLUSIONS: High glucose-induced impairment of intercellular adhesion molecule expression in gingival epithelial cells was related to the intercellular permeability of gingival cells, representing a possible link to hyperglycemia-related AGE signaling, oxidative stress, and ERK1/2 activation.


Assuntos
Diabetes Mellitus , Hiperglicemia , Humanos , Camundongos , Animais , Proteômica , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Epitélio/metabolismo , Moléculas de Adesão Celular , Doença Crônica , Gengiva/metabolismo , Glucose/farmacologia , RNA Mensageiro/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo
2.
Anal Chem ; 94(48): 16877-16886, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36426757

RESUMO

One of the technical challenges in the field of metabolomics is the development of a single-run method to detect the full complement of polar metabolites in biological samples. However, an ideal method to meet this demand has not yet been developed. Herein, we proposed a simple methodology that enables the comprehensive and simultaneous analysis of polar metabolites using unified-hydrophilic-interaction/anion-exchange liquid chromatography mass spectrometry (unified-HILIC/AEX/MS) with a polymer-based mixed amines column composed of methacrylate-based polymer particles with primary, secondary, tertiary, and quaternary amines as functional groups. The optimized unified-HILIC/AEX/MS method is composed of two consecutive chromatographic separations, HILIC-dominant separation for cationic, uncharged, and zwitterionic polar metabolites [retention times (RTs) = 0-12.8 min] and AEX-dominant separation for polar anionic metabolites (RTs = 12.8-26.5 min), by varying the ratio of acetonitrile to 40 mM ammonium bicarbonate solution (pH 9.8). A total of 400 polar metabolites were analyzed simultaneously through a combination of highly efficient separation using unified-HILIC/AEX and remarkably sensitive detection using multiple reaction monitoring-based triple quadrupole mass spectrometry (unified-HILIC/AEX/MS/MS). A nontargeted metabolomic approach using unified-HILIC/AEX high-resolution mass spectrometry (unified-HILIC/AEX/HRMS) also provided more comprehensive information on polar metabolites (3242 metabolic features) in HeLa cell extracts than the conventional HILIC/HRMS method (2068 metabolic features). Our established unified-HILIC/AEX/MS/MS and unified-HILIC/AEX/HRMS methods have several advantages over conventional techniques, including polar metabolome coverage, throughput, and accurate quantitative performance, and represent potentially useful tools for in-depth studies on metabolism and biomarker discovery.


Assuntos
Metaboloma , Espectrometria de Massas em Tandem , Humanos , Células HeLa , Cromatografia Líquida/métodos , Interações Hidrofóbicas e Hidrofílicas , Metabolômica/métodos , Ânions , Aminas , Polímeros
3.
Planta ; 238(3): 549-60, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23775438

RESUMO

A microscopic technique combining spectral confocal laser scanning microscopy with a lipophilic fluorescent dye, Nile red, which can emit trans-polyisoprene specific fluorescence, was developed, and unmixed images of synthesized trans-polyisoprene in situ in Eucommia ulmoides were successfully obtained. The images showed that trans-polyisoprene was initially synthesized as granules in non-articulated laticifers that changed shape to fibers during laticifer maturation. Non-articulated laticifers are developed from single laticiferous cells, which are differentiated from surrounding parenchyma cells in the cambium. Therefore, these observations suggested that trans-polyisoprene biosynthesis first started in laticifer cells as granules and then the granules accumulated and fused in the inner space of the laticifers over time. Finally, laticifers were filled with the synthesized trans-polyisoprene, which formed a fibrous structure fitting the laticifers shape. Both trans- and cis-polyisoprene are among the most important polymers naturally produced by plants, and this microscopic technique combined with histological study should provide useful information in the fields of plant histology, bioindustry and phytochemistry.


Assuntos
Eucommiaceae/metabolismo , Fluorescência , Hemiterpenos/metabolismo , Microscopia Confocal/métodos , Borracha/metabolismo
4.
BMC Biotechnol ; 12: 78, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23110380

RESUMO

BACKGROUND: Natural rubber produced by plants, known as polyisoprene, is the most widely used isoprenoid polymer. Plant polyisoprenes can be classified into two types; cis-polyisoprene and trans-polyisoprene, depending on the type of polymerization of the isoprene unit. More than 2000 species of higher plants produce latex consisting of cis-polyisoprene. Hevea brasiliensis (rubber tree) produces cis-polyisoprene, and is the key source of commercial rubber. In contrast, relatively few plant species produce trans-polyisoprene. Currently, trans-polyisoprene is mainly produced synthetically, and no plant species is used for its commercial production. RESULTS: To develop a plant-based system suitable for large-scale production of trans-polyisoprene, we selected a trans-polyisoprene-producing plant, Eucommia ulmoides Oliver, as the target for genetic transformation. A full-length cDNA (designated as EuIPI, Accession No. AB041629) encoding isopentenyl diphosphate isomerase (IPI) was isolated from E. ulmoides. EuIPI consisted of 1028 bp with a 675-bp open reading frame encoding a protein with 224 amino acid residues. EuIPI shared high identity with other plant IPIs, and the recombinant protein expressed in Escherichia coli showed IPI enzymatic activity in vitro. EuIPI was introduced into E. ulmoides via Agrobacterium-mediated transformation. Transgenic lines of E. ulmoides overexpressing EuIPI showed increased EuIPI expression (up to 19-fold that of the wild-type) and a 3- to 4-fold increase in the total content of trans-polyisoprenes, compared with the wild-type (non-transgenic root line) control. CONCLUSIONS: Increasing the expression level of EuIPI by overexpression increased accumulation of trans-polyisoprenes in transgenic E. ulmoides. IPI catalyzes the conversion of isopentenyl diphosphate to its highly electrophilic isomer, dimethylallyl diphosphate, which is the first step in the biosynthesis of all isoprenoids, including polyisoprene. Our results demonstrated that regulation of IPI expression is a key target for efficient production of trans-polyisoprene in E. ulmoides.


Assuntos
Butadienos/química , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Eucommiaceae/enzimologia , Hemiterpenos/química , Pentanos/química , Polímeros/metabolismo , Agrobacterium/metabolismo , Sequência de Aminoácidos , Isomerases de Ligação Dupla Carbono-Carbono/classificação , Isomerases de Ligação Dupla Carbono-Carbono/genética , Clonagem Molecular , Escherichia coli/metabolismo , Isomerismo , Dados de Sequência Molecular , Filogenia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plasmídeos/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Transformação Genética
5.
Planta ; 236(5): 1405-17, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22729820

RESUMO

Eucommia ulmoides Oliver is one of a few woody plants capable of producing abundant quantities of trans-polyisoprene rubber in their leaves, barks, and seed coats. One cDNA library each was constructed from its outer stem tissue and inner stem tissue. They comprised a total of 27,752 expressed sequence tags (ESTs) representing 10,520 unigenes made up of 4,302 contigs and 6,218 singletons. Homologues of genes coding for rubber particle membrane proteins that participate in the synthesis of high-molecular poly-isoprene in latex were isolated, as well as those encoding known major latex proteins (MLPs). MLPs extensively shared ESTs, indicating their abundant expression during trans-polyisoprene rubber biosynthesis. The six mevalonate pathway genes which are implicated in the synthesis of isopentenyl diphosphate (IPP), a starting material of poly-isoprene biosynthesis, were isolated, and their role in IPP biosynthesis was confirmed by functional complementation of suitable yeast mutants. Genes encoding five full-length trans-isoprenyl diphosphate synthases were also isolated, and two among those synthesized farnesyl diphosphate from IPP and dimethylallyl diphosphate, an assumed intermediate of rubber biosynthesis. This study should provide a valuable resource for further studies of rubber synthesis in E. ulmoides.


Assuntos
Eucommiaceae/genética , Eucommiaceae/metabolismo , Etiquetas de Sequências Expressas , Biblioteca Gênica , Genes de Plantas , Hemiterpenos/metabolismo , Látex/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Teste de Complementação Genética , Hemiterpenos/biossíntese , Hemiterpenos/genética , Dados de Sequência Molecular , Mutação , Compostos Organofosforados , Caules de Planta/genética
6.
J Chromatogr A ; 1651: 462282, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34144397

RESUMO

We report on the possibility to enhance the phase ratio and retention factor in silica monoliths. According to pioneering work done by Núñez et al. [1], this enhancement is pursued by applying a stationary phase layer via radical polymerization with octadecyl methacrylate (ODM) as an alternative to the customary octadecylsilylation (C18-derivatization). The difference in band broadening, retention factor and separation selectivity between both approaches was compared. Different hydrothermal treatment temperatures for the column preparation were applied to produce monolithic silica structures with three different mesopore sizes (resp. 10, 13, and 16 nm, as determined by argon physisorption) while maintaining similar domain size (sum of through-pore and skeleton size). It has been found that the columns with the poly(octadecyl methacrylate)-phase (ODM columns) provided a 60 to 80% higher retention factor in methanol-water mixture compared to the octadecylsilylated (ODS) columns produced by starting from similar silica backbone structures. In acetonitrile-water mixture, the enhancement is smaller (15 to 30% times higher), yet significant. By adjusting the fabrication conditions (for both the preparation of the monolithic backbones and the surface functionalization), the achieved retention factors (up k = 4.89 for pentylbenzene in 80:20% (v/v) methanol/water) are obviously higher than obtained in the pioneering study on ODM monoliths of Núñez et al. [1], and column clogging could be completely avoided. In addition, also separation efficiencies were significantly higher than shown in Ref. [1], with plate heights as low as 5.8 µm. These plate heights are however inferior to those observed on the ODS-modified sister columns. The difference can be explained by the slower intra-skeleton diffusion displayed by the ODM-modified columns, in turn caused by the larger obstruction to diffusion originating from the thicker stationary phase layer.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ácidos Polimetacrílicos , Dióxido de Silício , Porosidade
7.
Sci Rep ; 11(1): 18398, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526589

RESUMO

Periodontal infection induces systemic inflammation; therefore, aggravating diabetes. Orally administered periodontal pathogens may directly alter the gut microbiota. We orally treated obese db/db diabetes mice using Porphyromonas gingivalis (Pg). We screened for Pg-specific peptides in the intestinal fecal specimens and examined whether Pg localization influenced the intestinal microbiota profile, in turn altering the levels of the gut metabolites. We evaluated whether the deterioration in fasting hyperglycemia was related to the changes in the intrahepatic glucose metabolism, using proteome and metabolome analyses. Oral Pg treatment aggravated both fasting and postprandial hyperglycemia (P < 0.05), with a significant (P < 0.01) increase in dental alveolar bone resorption. Pg-specific peptides were identified in fecal specimens following oral Pg treatment. The intestinal Pg profoundly altered the gut microbiome profiles at the phylum, family, and genus levels; Prevotella exhibited the largest increase in abundance. In addition, Pg-treatment significantly altered intestinal metabolite levels. Fasting hyperglycemia was associated with the increase in the levels of gluconeogenesis-related enzymes and metabolites without changes in the expression of proinflammatory cytokines and insulin resistance. Oral Pg administration induced gut microbiota changes, leading to entero-hepatic metabolic derangements, thus aggravating hyperglycemia in an obese type 2 diabetes mouse model.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Disbiose/complicações , Disbiose/microbiologia , Microbioma Gastrointestinal , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Porphyromonas gingivalis/fisiologia , Animais , Terapia Biológica , Biomarcadores , Glicemia , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Metabolismo Energético , Jejum , Insulina/sangue , Camundongos , Peptídeos/metabolismo , Peptídeos/farmacologia , Periodontite/complicações , Periodontite/metabolismo , Periodontite/microbiologia , Periodontite/terapia
8.
Biosci Biotechnol Biochem ; 74(1): 13-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20057156

RESUMO

Natural polyisoprene is a biopolymer consisting of isoprene units (C(5)H(8)) that is used commercially in household, medical, and industrial materials. For the management of natural polyisoprene production, the selection of high-yield polyisoprene-producing trees, and an understanding of polyisoprene biosynthesis, a high-throughput and highly sensitive screening method for the quantification of polyisoprene is required. In this study, we examined pyrolysates from polyisoprenes, polyprenols, carotenoids, ubiquinone (CoQ-10), and sterols by pyrolysis gas chromatography/mass spectrometry (PyGC/MS) and determined that the amounts of isoprene and limonene released from polyprenols and polyisoprenes were dependent upon their molecular weights. Based on these results, we developed a relative quantification method for polyisoprene in leaves by direct analysis of 1 mg of leaves using PyGC/MS. This novel quantification method eliminated extraction steps and can be used in the measurement of polyisoprene contents in Eucommia ulmoides and Hevea brasiliensis.


Assuntos
Eucommiaceae/química , Hemiterpenos/análise , Hemiterpenos/química , Hevea/química , Ensaios de Triagem em Larga Escala , Látex/análise , Látex/química , Benzoquinonas/química , Butadienos/análise , Butadienos/química , Carotenoides/química , Clorofila/química , Cicloexenos/análise , Cicloexenos/química , Cromatografia Gasosa-Espectrometria de Massas , Limoneno , Peso Molecular , Pentanos/análise , Pentanos/química , Esteróis/química , Terpenos/análise , Terpenos/química
9.
Z Naturforsch C J Biosci ; 65(5-6): 363-72, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20653238

RESUMO

The biosynthetic origin of isopentenyl diphosphate in the polyisoprenoid biosynthesis of the rubber-producing plant Eucommia ulmoides Oliver was elucidated for the first time by feeding experiments using 13C-labeled isotopomers of (RS)-mevalonate, 1-deoxy-D-xylulose-3,4,5-triacetate, 2C-methyl-D-erythritol-1,2,3,4-tetraacetate, and pyruvate. After 13C-labeled isotopomers were fed to the young seedlings, the polyisoprenoid fractions were prepared and analyzed by 13C NMR. The NMR data showed that the isoprene units of polyisoprenoid derived from isopentenyl diphosphate, which was biosynthesized using both mevalonate and 1-deoxy-D-xylulose-5-phosphate in E. ulmoides. It is assumed that the cross-talk of isopentenyl diphosphate, derived from both pathways, occurs during the biosynthesis of polyisoprenoid; therefore, it was observed in the formation of low-molecular weight isoprenoids.


Assuntos
Eucommiaceae/metabolismo , Ácido Mevalônico/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Borracha/síntese química , Isótopos de Carbono , Espectroscopia de Ressonância Magnética , Fosfatos de Poli-Isoprenil/biossíntese , Fosfatos de Poli-Isoprenil/isolamento & purificação , Plântula/metabolismo , Solventes
10.
J Chromatogr A ; 1626: 461363, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32797842

RESUMO

Analytical techniques to determine volatile compounds such as flavor, aroma, and fragrances are in high demand due to their wide range of applications in industry, the chemical properties of them are very diverse. Supercritical fluid chromatography (SFC) is capable of high speed, high peak capacity separation and has a high separation coverage. It is also an advantageous for preparative purifications due to its unique mobile phase conditions. However, there is no column commercially available for SFC that is suitable to comprehensively separate volatile compounds. SFC is limited to the use of silica-based columns due to weak retentions and polymer-based column issues such as pressure, swelling and shrinkage tolerances. This study demonstrated comprehensive analytical method for volatile in SFC using a highly cross-linked styrene divinylbenzene (SDVB) polymer-based column, newly developed for SFC. In this study, 23 typical volatile compounds with a wide variety of chemical properties were selected as model compounds. The newly developed SDVB column showed, compared to conventional silica-based columns (k > 0.3), an excellent overall and substantial improved retentions (k > 1.6) under SFC mobile phase conditions. It was also able to retain esters (hydroxy acetate, pentyl butylate, methyl salicylate) and non-polar terpenes (limonene, pinene) that did not show sufficient retention in any other commercially available silica-based columns. Aldehydes reacting on NH2 column due to Schiff base formation were also successfully eluted. It was confirmed that SDVB column provided comprehensive separation and wide coverage for volatile compounds.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Poliestirenos/química , Compostos de Vinila/química , Espectrometria de Massas , Dióxido de Silício , Terpenos/isolamento & purificação , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/isolamento & purificação
11.
J Sep Sci ; 31(8): 1274-8, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18384099

RESUMO

This review describes the usefulness of supercritical fluid chromatography (SFC) in the analysis of hydrophobic metabolites. The use of SFC for the analysis of naturally occurring polyprenols markedly improves the chromatographic resolution of polyprenol homologues and their geometric isomers as compared to conventional HPLC. Under optimized SFC conditions, individual homologues with 10-100-mers were separated. Furthermore, we established an analytical system for the fingerprinting and profiling of diverse lipids through the usage of SFC-MS. When a cyanopropylated silica gel packed column was used for the separation, 14 lipids were successfully detected, and the time required for analysis was less than 15 min. The use of an octadecylsilylated column for the separation depended on the differences in the fatty acid side chains. SFC is a useful separation technology for hydrophobic metabolites, which are difficult to be separated by HPLC.


Assuntos
Álcoois/isolamento & purificação , Cromatografia com Fluido Supercrítico/métodos , Álcoois/análise , Técnicas de Química Analítica/métodos , Cromatografia/métodos , Cromatografia Líquida de Alta Pressão/métodos , Ácidos Graxos/química , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Espectrometria de Massas/métodos , Folhas de Planta/metabolismo , Polímeros/química , Sílica Gel , Dióxido de Silício/química , Espectrometria de Massas por Ionização por Electrospray , Fatores de Tempo
12.
J Biosci Bioeng ; 105(4): 355-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18499051

RESUMO

Commercial development of trans-1,4-polyisoprene from Eucommia ulmoides Oliver (EU-rubber) requires specific knowledge on selection of high-rubber-content lines and establishment of agronomic cultivation methods for achieving maximum EU-rubber yield. The development can be facilitated by high-throughput and highly sensitive analytical techniques for EU-rubber extraction and quantification. In this paper, we described an efficient EU-rubber extraction method, and validated that the accuracy was equivalent to that of the conventional Soxhlet extraction method. We also described a highly sensitive quantification method for EU-rubber by Fourier transform infrared spectroscopy (FT-IR) and pyrolysis-gas chromatography/mass spectrometry (PyGC/MS). We successfully applied the extraction/quantification method for study of seasonal changes in EU-rubber content and molecular weight distribution.


Assuntos
Eucommiaceae/química , Borracha/análise , Borracha/metabolismo , Estações do Ano , Espectroscopia de Infravermelho com Transformada de Fourier , Butadienos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hemiterpenos/análise , Hemiterpenos/biossíntese , Pentanos/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
13.
Z Naturforsch C J Biosci ; 62(7-8): 579-82, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17913076

RESUMO

Periploca sepium Bunge (Chinese silk vine) is a woody climbing vine belonging to the family Asclepiadaceae. It originally comes from Northwest China. Periploca resembles the Para-rubber tree, Hevea brasiliensis, regarding a similar body plan to produce a milky exudate containing rubber latex. The Periploca plant was assessed as a rubber-producing plant by rubber structure elucidation and its molecular weight distribution. A rubber fraction purified from the milky exudate was subjected to 1H NMR analysis, and a characteristic signal derived from cis-polyisoprene was observed. In addition, when the molecular weight distribution of rubber components in the exudate was measured (using size-exclusion chromatography), the number-average molecular weight (Mn), weight-average molecular weight (Mw), and polydispersity (Mw/Mn) were estimated to be Mn = 1.3 x 10(5), Mw = 4.1 x 10(5), and Mw/Mn = 3.1, respectively. Furthermore, the presence of polyisoprene, with Mn = 4.0 x 10(4), Mw = 7.6 x 10(4), and Mw/Mn = 2.5, was also confirmed in plantlets obtained from shoots as a result of tissue culture.


Assuntos
Biopolímeros/biossíntese , Periploca/metabolismo , Borracha/metabolismo , Cromatografia em Gel , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Borracha/química , Borracha/isolamento & purificação
14.
Sci Rep ; 7: 42818, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28220901

RESUMO

Onset of chronic periodontitis is associated with an aberrant polymicrobial community, termed dysbiosis. Findings regarding its etiology obtained using high-throughput sequencing technique suggested that dysbiosis holds a conserved metabolic signature as an emergent property. The purpose of this study was to identify robust biomarkers for periodontal inflammation severity. Furthermore, we investigated disease-associated metabolic signatures of periodontal microbiota using a salivary metabolomics approach. Whole saliva samples were obtained from adult subjects before and after removal of supragingival plaque (debridement). Periodontal inflamed surface area (PISA) was employed as an indicator of periodontal inflammatory status. Based on multivariate analyses using pre-debridement salivary metabolomics data, we found that metabolites associated with higher PISA included cadaverine and hydrocinnamate, while uric acid and ethanolamine were associated with lower PISA. Next, we focused on dental plaque metabolic byproducts by selecting salivary metabolites significantly decreased following debridement. Metabolite set enrichment analysis revealed that polyamine metabolism, arginine and proline metabolism, butyric acid metabolism, and lysine degradation were distinctive metabolic signatures of dental plaque in the high PISA group, which may be related to the metabolic signatures of disease-associated communities. Collectively, our findings identified potential biomarkers of periodontal inflammatory status and also provide insight into metabolic signatures of dysbiotic communities.


Assuntos
Periodontite Crônica/patologia , Placa Dentária/metabolismo , Adulto , Área Sob a Curva , Biomarcadores/metabolismo , Cadaverina/metabolismo , Periodontite Crônica/metabolismo , Feminino , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , Fenilpropionatos/metabolismo , Curva ROC , Saliva/metabolismo , Índice de Gravidade de Doença
15.
Mass Spectrom (Tokyo) ; 5(1): A0047, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446770

RESUMO

Periodontitis is one of the most prevalent threats to oral health as the most common cause of tooth loss. In order to perform effective treatment, a clinical test that detect sites where disease activity is high and predicts periodontal tissue destruction is strongly desired, however, it is still difficult to prognose the periodontal tissue breakdown on the basis of conventional methods. The aim of this study is to examine the usefulness of gas chromatography/mass spectrometry (GC/MS), which could eventually be used for on-site analysis of metabolites in gingival crevicular fluid (GCF) in order to objectively diagnose periodontitis at a molecular level. GCF samples were collected from two diseased sites (one site with a moderate pocket and another site with a deep pocket) from each patient and from clinically healthy sites of volunteers. Nineteen metabolites were identified using GC/MS. Total ion current chromatograms showed broad differences in metabolite peak patterns between GCF samples obtained from healthy sites, moderate-pocket sites, and deep-pocket sites. The intensity difference of some metabolites was significant at sites with deep pockets compared to healthy sites. Additionally, metabolite intensities at moderate-pocket sites showed an intermediate profile between the severely diseased sites and healthy sites, which suggested that periodontitis progression could be observed with a changing metabolite profile. Principal component analysis confirmed these observations by clearly delineating healthy sites and sites with deep pockets. These results suggest that metabolomic analysis of GCF could be useful for prediction and diagnosis of periodontal disease in a single visit from a patient and provides the groundwork for establishing a new, on-site diagnostic method for periodontitis.

17.
Sci Rep ; 5: 11617, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26130086

RESUMO

Ralstonia eutropha is a facultative chemolithoautotrophic bacterium that uses the Calvin-Benson-Bassham (CBB) cycle for CO2 fixation. This study showed that R. eutropha strain H16G incorporated (13)CO2, emitted by the oxidative decarboxylation of [1-(13)C1]-glucose, into key metabolites of the CBB cycle and finally into poly(3-hydroxybutyrate) [P(3HB)] with up to 5.6% (13)C abundance. The carbon yield of P(3HB) produced from glucose by the strain H16G was 1.2 times higher than that by the CBB cycle-inactivated mutants, in agreement with the possible fixation of CO2 estimated from the balance of energy and reducing equivalents through sugar degradation integrated with the CBB cycle. The results proved that the 'gratuitously' functional CBB cycle in R. eutropha under aerobic heterotrophic conditions participated in the reutilization of CO2 emitted during sugar degradation, leading to an advantage expressed as increased carbon yield of the storage compound. This is a new insight into the role of the CBB cycle, and may be applicable for more efficient utilization of biomass resources.


Assuntos
Metabolismo dos Carboidratos , Dióxido de Carbono/metabolismo , Fotossíntese , Metabolismo dos Carboidratos/efeitos dos fármacos , Carbono/metabolismo , Isótopos de Carbono , Cupriavidus necator/efeitos dos fármacos , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Hidroxibutiratos/metabolismo , Metaboloma/efeitos dos fármacos , Metabolômica , Fotossíntese/efeitos dos fármacos , Poliésteres/metabolismo
18.
Planta ; 215(6): 934-9, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12355153

RESUMO

The localization of polyisoprene in young stem tissues of Eucommia ulmoides Oliver was investigated by histochemical staining and Fourier transform infrared (FT-IR) microspectroscopy. The fibrous structures were stained with Oil Red O. FT-IR microspectroscopic analysis proved that the fibrous structures were trans-polyisoprene. Granular structures stained with the dye, and characteristic absorptions at 2,960 cm(-1) and 1,430 cm(-1) in FT-IR suggested that trans-polyisoprene accumulated in the vicinity of the cambium layer. We have thus successfully shown for the first time the localization of trans-polyisoprene in plant tissues, and our histological investigation allowed us to presume the main sites of biosynthesis and accumulation of trans-rubber. Furthermore, a new technical approach, the preparation of sections using an electronic freezing unit and the in situ analysis of polyisoprene using FT-IR microspectroscopy, is demonstrated to be a promising method for determining the accumulation of polyisoprene as well as other metabolites.


Assuntos
Butadienos/metabolismo , Eucommiaceae/química , Hemiterpenos , Histocitoquímica/métodos , Pentanos , Borracha/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Compostos Azo/química , Eucommiaceae/metabolismo , Casca de Planta/química , Casca de Planta/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Caules de Planta/química , Caules de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA