Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Med Genet A ; 188(5): 1600-1606, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35060672

RESUMO

Loss-of-function variants in KMT2D are responsible for Kabuki syndrome type 1 (KS1). In the last 5 years, missense variants in exon 38 or 39 in KMT2D have been found in patients exhibiting a new phenotype with multiple malformations and absence of intellectual disability, distinct from KS1. To date, only 16 cases have been reported with classic features of hearing loss, abnormality of the ear, lacrimal duct defects, branchial sinus/neck pits, choanal atresia (CA), athelia, hypo(para)thyroidism, growth delay, and dental anomalies. We report here two families and one unpublished variant, refining the clinical and molecular knowledge on this new entity. Family 1 presented with apparently isolated autosomal dominant choanal atresia, in eight members across three generations. Exome sequencing (ES) in the proband and one cousin revealed a p.Glu3569Gly variant in exon 38 of KMT2D, segregating with choanal atresia in the family. Clinical reevaluation evidenced thyroid dysfunction, mild hearing anomalies, and hypoplastic nipple in some patients. Family 2 presented with nasolacrimal duct obstruction, hearing loss, mild facial features, unilateral axial polydactyly, and unilateral toe V-VI syndactyly. ES revealed a de novo already reported p.Arg3582Gln variant in exon 38 of KMT2D. Considering these results and the existing literature, we suspect that missense variants in exon 38 of KMT2D are responsible for phenotypes that are even milder (isolated CA) and broader (polydactyly) than what has been previously described.


Assuntos
Atresia das Cóanas , Perda Auditiva , Obstrução dos Ductos Lacrimais , Ducto Nasolacrimal , Polidactilia , Doenças Vestibulares , Anormalidades Múltiplas , Atresia das Cóanas/genética , Éxons , Face/anormalidades , Perda Auditiva/genética , Doenças Hematológicas , Humanos , Fenótipo , Polidactilia/genética , Doenças Vestibulares/genética
2.
Am J Hum Genet ; 101(6): 1021-1033, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29220674

RESUMO

ACTB encodes ß-actin, an abundant cytoskeletal housekeeping protein. In humans, postulated gain-of-function missense mutations cause Baraitser-Winter syndrome (BRWS), characterized by intellectual disability, cortical malformations, coloboma, sensorineural deafness, and typical facial features. To date, the consequences of loss-of-function ACTB mutations have not been proven conclusively. We describe heterozygous ACTB deletions and nonsense and frameshift mutations in 33 individuals with developmental delay, apparent intellectual disability, increased frequency of internal organ malformations (including those of the heart and the renal tract), growth retardation, and a recognizable facial gestalt (interrupted wavy eyebrows, dense eyelashes, wide nose, wide mouth, and a prominent chin) that is distinct from characteristics of individuals with BRWS. Strikingly, this spectrum overlaps with that of several chromatin-remodeling developmental disorders. In wild-type mouse embryos, ß-actin expression was prominent in the kidney, heart, and brain. ACTB mRNA expression levels in lymphoblastic lines and fibroblasts derived from affected individuals were decreased in comparison to those in control cells. Fibroblasts derived from an affected individual and ACTB siRNA knockdown in wild-type fibroblasts showed altered cell shape and migration, consistent with known roles of cytoplasmic ß-actin. We also demonstrate that ACTB haploinsufficiency leads to reduced cell proliferation, altered expression of cell-cycle genes, and decreased amounts of nuclear, but not cytoplasmic, ß-actin. In conclusion, we show that heterozygous loss-of-function ACTB mutations cause a distinct pleiotropic malformation syndrome with intellectual disability. Our biological studies suggest that a critically reduced amount of this protein alters cell shape, migration, proliferation, and gene expression to the detriment of brain, heart, and kidney development.


Assuntos
Anormalidades Múltiplas/genética , Actinas/genética , Deficiências do Desenvolvimento/genética , Haploinsuficiência/genética , Actinas/biossíntese , Adolescente , Adulto , Idoso , Animais , Ciclo Celular/genética , Proliferação de Células/genética , Criança , Pré-Escolar , Códon sem Sentido/genética , Coloboma/genética , Fácies , Feminino , Mutação da Fase de Leitura/genética , Deleção de Genes , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Malformações do Desenvolvimento Cortical/genética , Camundongos , Interferência de RNA , RNA Interferente Pequeno/genética , Adulto Jovem
3.
HGG Adv ; 4(2): 100186, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37009414

RESUMO

TSPEAR variants cause autosomal recessive ectodermal dysplasia (ARED) 14. The function of TSPEAR is unknown. The clinical features, the mutation spectrum, and the underlying mechanisms of ARED14 are poorly understood. Combining data from new and previously published individuals established that ARED14 is primarily characterized by dental anomalies such as conical tooth cusps and hypodontia, like those seen in individuals with WNT10A-related odontoonychodermal dysplasia. AlphaFold-predicted structure-based analysis showed that most of the pathogenic TSPEAR missense variants likely destabilize the ß-propeller of the protein. Analysis of 100000 Genomes Project (100KGP) data revealed multiple founder TSPEAR variants across different populations. Mutational and recombination clock analyses demonstrated that non-Finnish European founder variants likely originated around the end of the last ice age, a period of major climatic transition. Analysis of gnomAD data showed that the non-Finnish European population TSPEAR gene-carrier rate is ∼1/140, making it one of the commonest AREDs. Phylogenetic and AlphaFold structural analyses showed that TSPEAR is an ortholog of drosophila Closca, an extracellular matrix-dependent signaling regulator. We, therefore, hypothesized that TSPEAR could have a role in enamel knot, a structure that coordinates patterning of developing tooth cusps. Analysis of mouse single-cell RNA sequencing (scRNA-seq) data revealed highly restricted expression of Tspear in clusters representing enamel knots. A tspeara -/-;tspearb -/- double-knockout zebrafish model recapitulated the clinical features of ARED14 and fin regeneration abnormalities of wnt10a knockout fish, thus suggesting interaction between tspear and wnt10a. In summary, we provide insights into the role of TSPEAR in ectodermal development and the evolutionary history, epidemiology, mechanisms, and consequences of its loss of function variants.


Assuntos
Displasia Ectodérmica , Dente , Animais , Camundongos , Filogenia , Peixe-Zebra , Displasia Ectodérmica/epidemiologia , Dente/patologia
4.
Muscle Nerve ; 46(5): 698-704, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22996176

RESUMO

INTRODUCTION: Although unmyelinated nerve fibers are affected in Charcot-Marie-Tooth type 1A (CMT1A) disease, they have not been studied in detail due to the invasive nature of the techniques needed to study them. We established alterations in C-fiber bundles of the cornea in patients with CMT1A using non-invasive corneal confocal microscopy (CCM). METHODS: Twelve patients with CMT1A and 12 healthy control subjects underwent assessment of neuropathic symptoms and deficits, electrophysiology, quantitative sensory testing, corneal sensitivity, and corneal confocal microscopy. RESULTS: Corneal sensitivity, corneal nerve fiber density, corneal nerve branch density, corneal nerve fiber length, and corneal nerve fiber tortuosity were significantly reduced in CMT1A patients compared with controls. There was a significant correlation between corneal sensation and CCM parameters with the severity of painful neuropathic symptoms, cold and warm thresholds, and median nerve CMAP amplitude. CONCLUSIONS: CCM demonstrates significant damage to C-fiber bundles, which relates to some measures of neuropathy in CMT1A patients.


Assuntos
Doença de Charcot-Marie-Tooth/patologia , Córnea/patologia , Fibras Nervosas Amielínicas/patologia , Adulto , Doença de Charcot-Marie-Tooth/fisiopatologia , Feminino , Humanos , Masculino , Microscopia Confocal/métodos , Pessoa de Meia-Idade , Medição da Dor/métodos
5.
JIMD Rep ; 49(1): 43-47, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31497480

RESUMO

Imerslund-Grasbeck syndrome (IGS, OMIM 261100) is a rare autosomal recessive disease characterized by vitamin B12 malabsorption resulting in megaloblastic anemia and asymptomatic proteinuria. IGS is caused by bi-allelic mutations in either CUBN or AMN that respectively encode the cubilin and amnionless subunits of the cobalamin-intrinsic factor receptor. We report four siblings (three boys, one girl) of non-consanguineous parents of Jewish background, aged 10 months to 12 years, with homozygous CUBN frameshift c.2614_2615deIGA p.(Asp872LeufisTer3) mutation and typical features of IGS. The two older brothers presented in early infancy with lethargy, mouth ulcerations, eosinophilic enterocolitis, megaloblastic anemia and failure to thrive. Investigations revealed low serum cobalamin levels. Intramuscular hydroxycobalamin supplementation resulted in dramatic resolution of all symptoms including lethargy. A positive impact on their growth curve was seen. Prospective early treatment in the younger siblings prevented these manifestations. Proteinuria with proximal tubulopathy was seen in all patients, plasma protein level and renal function were normal. All children had pronounced vitamin D deficiency and required high doses of oral supplementation. Vitamin B12 treatment could be individually adjusted; requirement decreased with age. Tubulopathy showed improvement over time. Low vitamin D could be explained by cubilin being involved in reabsorption of vitamin carriers.

6.
Eur J Hum Genet ; 23(9): 1165-70, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25424711

RESUMO

KAT6B sequence variants have been identified previously in both patients with the Say-Barber-Biesecker type of blepharophimosis mental retardation syndromes (SBBS) and in the more severe genitopatellar syndrome (GPS). We report on the findings in a previously unreported group of 57 individuals with suggestive features of SBBS or GPS. Likely causative variants have been identified in 34/57 patients and were commonly located in the terminal exons of KAT6B. Of those where parental samples could be tested, all occurred de novo. Thirty out of thirty-four had truncating variants, one had a missense variant and the remaining three had the same synonymous change predicted to affect splicing. Variants in GPS tended to occur more proximally to those in SBBS patients, and genotype/phenotype analysis demonstrated significant clinical overlap between SBBS and GPS. The de novo synonymous change seen in three patients with features of SBBS occurred more proximally in exon 16. Statistical analysis of clinical features demonstrated that KAT6B variant-positive patients were more likely to display hypotonia, feeding difficulties, long thumbs/great toes and dental, thyroid and patella abnormalities than KAT6B variant-negative patients. The few reported patients with KAT6B haploinsufficiency had a much milder phenotype, though with some features overlapping those of SBBS. We report the findings in a previously unreported patient with a deletion of the KAT6B gene to further delineate the haploinsufficiency phenotype. The molecular mechanisms giving rise to the SBBS and GPS phenotypes are discussed.


Assuntos
Blefarofimose/genética , Hipotireoidismo Congênito/genética , Anormalidades Craniofaciais/genética , Éxons , Cardiopatias Congênitas/genética , Histona Acetiltransferases/genética , Deficiência Intelectual/genética , Instabilidade Articular/genética , Rim/anormalidades , Mutação , Patela/anormalidades , Transtornos Psicomotores/genética , Escroto/anormalidades , Anormalidades Urogenitais/genética , Blefarofimose/diagnóstico , Blefarofimose/patologia , Pré-Escolar , Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/patologia , Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/patologia , Análise Mutacional de DNA , Diagnóstico Diferencial , Exoma , Fácies , Feminino , Expressão Gênica , Estudos de Associação Genética , Genótipo , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/patologia , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Instabilidade Articular/diagnóstico , Instabilidade Articular/patologia , Rim/patologia , Masculino , Patela/patologia , Fenótipo , Transtornos Psicomotores/diagnóstico , Transtornos Psicomotores/patologia , Escroto/patologia , Índice de Gravidade de Doença , Anormalidades Urogenitais/diagnóstico , Anormalidades Urogenitais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA