Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metab Eng ; 76: 97-109, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36731627

RESUMO

Ethylene glycol (EG) is a promising next generation feedstock for bioprocesses. It is a key component of the ubiquitous plastic polyethylene terephthalate (PET) and other polyester fibers and plastics, used in antifreeze formulations, and can also be generated by electrochemical conversion of syngas, which makes EG a key compound in a circular bioeconomy. The majority of biotechnologically relevant bacteria assimilate EG via the glycerate pathway, a wasteful metabolic route that releases CO2 and requires reducing equivalents as well as ATP. In contrast, the recently characterized ß-hydroxyaspartate cycle (BHAC) provides a more efficient, carbon-conserving route for C2 assimilation. Here we aimed at overcoming the natural limitations of EG metabolism in the industrially relevant strain Pseudomonas putida KT2440 by replacing the native glycerate pathway with the BHAC. We first prototyped the core reaction sequence of the BHAC in Escherichia coli before establishing the complete four-enzyme BHAC in Pseudomonas putida. Directed evolution on EG resulted in an improved strain that exhibits 35% faster growth and 20% increased biomass yield compared to a recently reported P. putida strain that was evolved to grow on EG via the glycerate pathway. Genome sequencing and proteomics highlight plastic adaptations of the genetic and metabolic networks in response to the introduction of the BHAC into P. putida and identify key mutations for its further integration during evolution. Taken together, our study shows that the BHAC can be utilized as 'plug-and-play' module for the metabolic engineering of two important microbial platform organisms, paving the way for multiple applications for a more efficient and carbon-conserving upcycling of EG in the future.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Plásticos/metabolismo , Etilenoglicol/metabolismo , Polietilenotereftalatos/metabolismo , Carbono/metabolismo
2.
Orig Life Evol Biosph ; 35(2): 111-33, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16010993

RESUMO

The basic Graded Autocatalysis Replication Domain (GARD) model consists of a repertoire of small molecules, typically amphiphiles, which join and leave a non-covalent micelle-like assembly. Its replication behavior is due to occasional fission, followed by a homeostatic growth process governed by the assembly's composition. Limitations of the basic GARD model are its small finite molecular repertoire and the lack of a clear path from a 'monomer world' towards polymer-based living entities. We have now devised an extension of the model (polymer GARD or P-GARD), where a monomer-based GARD serves as a 'scaffold' for oligomer formation, as a result of internal chemical rules. We tested this concept with computer simulations of a simple case of monovalent monomers, whereby more complex molecules (dimers) are formed internally, in a manner resembling biosynthetic metabolism. We have observed events of dimer 'take-over' - the formation of compositionally stable, replication-prone quasi stationary states (composomes) that have appreciable dimer content. The appearance of novel metabolism-like networks obeys a time-dependent power law, reminiscent of evolution under punctuated equilibrium. A simulation under constant population conditions shows the dynamics of takeover and extinction of different composomes, leading to the generation of different population distributions. The P-GARD model offers a scenario whereby biopolymer formation may be a result of rather than a prerequisite for early life-like processes.


Assuntos
Simulação por Computador , Evolução Química , Modelos Químicos , Polímeros/química , Software , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA