Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Analyst ; 149(9): 2637-2646, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38529543

RESUMO

Silver nanoparticles (AgNPs) conjugated with polymers are well-known for their powerful and effective antimicrobial properties. In particular, the incorporation of AgNPs in biocompatible catecholamine-based polymers, such as polydopamine (PDA), has recently shown promising antimicrobial activity, due to the synergistic effects of the AgNPs, silver(I) ions released and PDA. In this study, we generated AgNPs-PDA-patterned surfaces by localised electrochemical depositions, using a double potentiostatic method via scanning electrochemical cell microscopy (SECCM). This technique enabled the assessment of a wide parameter space in a high-throughput manner. The optimised electrodeposition process resulted in stable and homogeneously distributed AgNP-microspots, and their antimicrobial activity against Escherichia coli was assessed using atomic force microscopy (AFM)-based force spectroscopy, in terms of bacterial adhesion and cell elasticity. We observed that the bacterial outer membrane underwent significant structural changes, when in close proximity to the AgNPs, namely increased hydrophilicity and stiffness loss. The spatially varied antimicrobial effect found experimentally was rationalised by numerical simulations of silver(I) concentration profiles.


Assuntos
Escherichia coli , Nanopartículas Metálicas , Prata , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Microscopia de Força Atômica , Polímeros/química , Polímeros/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Indóis/química , Indóis/farmacologia
2.
Anal Bioanal Chem ; 415(11): 2059-2070, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36434170

RESUMO

Antibacterial polymer materials have gained interest due to their capability to inhibit or eradicate biofilms with greater efficiency in comparison with their monomeric counterparts. Among the antimicrobial and anti-biofouling polymers, catecholamine-based polymers - and in particular polydopamine - have been studied due to their favorable adhesion properties, which can be tuned by controlling the pH value. In this study, we used atomic force microscopy (AFM)-based spectroscopy to investigate the relation between the adhesion properties and surface charge density and the pH of electrochemically deposited polydopamine films presenting a dissociation constant of polydopamine of 6.3 ± 0.2 and a point of zero charge of 5.37 ± 0.06. Furthermore, using AFM and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), the influence of the surface charge density of polydopamine on bacterial adhesion and biofilm formation was investigated. It was shown that the adhesion of Escherichia coli at positively charged polydopamine is three times higher compared to a negatively charged polymer, and that the formation of biofilms is favored at positively charged polymers.


Assuntos
Incrustação Biológica , Polímeros , Polímeros/química , Biofilmes , Indóis/química , Aderência Bacteriana , Microscopia de Força Atômica , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Propriedades de Superfície
3.
Macromol Rapid Commun ; 41(22): e2000418, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33047416

RESUMO

In the development and optimization of imaging methods, photoacoustic imaging (PAI) has become a powerful tool for preclinical biomedical diagnosis and detection of cancer. PAI probes can improve contrast and help identify pathogenic tissue. Such contrast agents must meet several requirements: they need to be biocompatible, and absorb strongly in the near-infrared (NIR) range, while relaxing the photoexcited state thermally and not radiatively. In this work, polymer nanoparticles are produced with croconaine as a monomer unit. Small molecular croconaine dyes are known to act as efficient pigments, which do not show photoluminescence. Here, for the first time croconaine copolymer nanoparticles are produced from croconic acid and a range of aromatic diamines. Following a dispersion polymerization protocol, this approach yields monodisperse particles of adjustable size. All synthesized polymers exhibit broad absorption within the NIR spectrum and therefore represent suitable candidates as contrast agents for PAI. The optical properties of these polymer particles are discussed with respect to the relation between particle size and outstanding photoacoustic performance. Biocompatibility of the polymer particles is demonstrated in cell viability experiments.


Assuntos
Nanopartículas , Técnicas Fotoacústicas , Meios de Contraste , Diagnóstico por Imagem , Polímeros
4.
Biomacromolecules ; 15(7): 2461-74, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24954629

RESUMO

Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low µM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria.


Assuntos
Toxinas Bacterianas/antagonistas & inibidores , Materiais Biocompatíveis/química , Toxinas Botulínicas/antagonistas & inibidores , Cátions/química , Dendrímeros/química , Animais , Antígenos de Bactérias , Materiais Biocompatíveis/farmacologia , Transporte Biológico , Chlorocebus aethiops , Citosol/efeitos dos fármacos , Citosol/metabolismo , Dendrímeros/farmacologia , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Células HeLa , Humanos , Bicamadas Lipídicas/química , Células Vero
5.
J Am Chem Soc ; 135(46): 17254-7, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24156787

RESUMO

A facile, noncovalent solid-phase immobilization platform is described to assemble Janus-like supramolecular fusion proteins that are responsive to external stimuli. A chemically postmodified transporter protein, DHSA, is fused with (imino)biotinylated cargo proteins via an avidin adaptor with a high degree of spatial control. Notably, the derived heterofusion proteins are able to cross cellular membranes, dissociate at acidic pH due to the iminobiotin linker and preserve the enzymatic activity of the cargo proteins ß-galactosidase and the enzymatic subunit of Clostridium botulinum C2 toxin. The mix-and-match strategy described herein opens unique opportunities to access macromolecular architectures of high structural definition and biological activity, thus complementing protein ligation and recombinant protein expression techniques.


Assuntos
Toxinas Botulínicas/metabolismo , Albumina Sérica/metabolismo , beta-Galactosidase/metabolismo , Animais , Biotina/química , Biotina/metabolismo , Toxinas Botulínicas/química , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Substâncias Macromoleculares/química , Maleimidas/química , Maleimidas/metabolismo , Modelos Moleculares , Estrutura Molecular , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Albumina Sérica/química , beta-Galactosidase/química
6.
Sci Rep ; 13(1): 20175, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978264

RESUMO

Besides the many advantages of oral drug administration, challenges like premature drug degradation and limited bioavailability in the gastro-intestinal tract (GIT) remain. A prolonged residence time in the GIT is beneficial for enhancing the therapeutic outcome when treating diseases associated with an increased intestinal clearance rate, like inflammatory bowel disease (IBD). In this study, we synthesized rod-shaped mesoporous silica nanoparticles (MSNs) functionalized with polyethylene glycol (PEG) or hyaluronic acid (HA) and investigated their bio-distribution upon oral administration in vivo. The negatively charged, non-toxic particles showed different accumulation behavior over time in healthy mice and in mice with dextran sulfate sodium (DSS)-induced intestinal inflammation. PEGylated particles were shown to accumulate in the lower intestinal tract of healthy animals, whereas inflammation promoted retention of HA-functionalized particles in this area. Overall systemic absorption was low. However, some particles were detected in organs of mice with DSS-induced colitis, especially in the case of MSN-PEG. The in vivo findings were connected to surface chemistry-related differences in particle adhesion on Caco-2/Raji and mucus-producing Caco-2/Raji/HT29 cell co-culture epithelial models in vitro. While the particle adhesion behavior in vivo was mirrored in the in vitro results, this was not the case for the resorption results, suggesting that the in vitro model does not fully reflect the erosion of the inflamed epithelial tissue. Overall, our study demonstrates the possibility to modulate accumulation and retention of MSNs in the GIT of mice with and without inflammation through surface functionalization, which has important implications for the formulation of nanoparticle-based delivery systems for oral delivery applications.


Assuntos
Colite , Nanopartículas , Humanos , Camundongos , Animais , Sistemas de Liberação de Medicamentos/métodos , Células CACO-2 , Dióxido de Silício , Colite/induzido quimicamente , Colite/tratamento farmacológico , Polietilenoglicóis , Inflamação , Sulfato de Dextrana
7.
NPJ Biofilms Microbiomes ; 8(1): 92, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402858

RESUMO

Foodborne pathogenic microorganisms form biofilms at abiotic surfaces, which is a particular challenge in food processing industries. The complexity of biofilm formation requires a fundamental understanding on the involved molecular mechanisms, which may then lead to efficient prevention strategies. In the present study, biogenic amine producing bacteria, i.e., Lentilactobacillus parabuchneri DSM 5987 strain isolated from cheese were studied in respect with biofilm formation, which is of substantial relevance given their contribution to the presence of histamine in dairy products. While scanning electron microscopy was used to investigate biofilm adhesion at stainless steel surfaces, in situ infrared attenuated total reflection spectroscopy (IR-ATR) using a custom flow-through assembly was used for real-time and non-destructive observations of biofilm formation during a period of several days. The spectral window of 1700-600 cm-1 provides access to vibrational signatures characteristic for identifying and tracking L. parabuchneri biofilm formation and maturation. Especially, the amide I and II bands, lactic acid produced as the biofilm matures, and a pronounced increase of bands characteristic for extracellular polymeric substances (EPS) provide molecular insight into biofilm formation, maturation, and changes in biofilm architecture. Finally, multivariate data evaluation strategies were applied facilitating the unambiguous classification of the observed biofilm changes via IR spectroscopic data.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Lactobacillus , Biofilmes , Aço Inoxidável
8.
Adv Healthc Mater ; 6(21)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28758712

RESUMO

In osteoporosis, bone structure can be improved by the introduction of therapeutic molecules inhibiting bone resorption by osteoclasts. Here, biocompatible hydrogels represent an excellent option for the delivery of pharmacologically active molecules to the bone tissue because of their biodegradability, injectability, and manifold functionalization capacity. The present study reports the preparation of a multifunctional hybrid hydrogel from chemically modified human serum albumin and rationally designed DNA building blocks. The hybrid hydrogel combines advantageous characteristics, including rapid gelation through DNA hybridization under physiological conditions and a self-healing and injectable nature with the possibility of specific loading and spatiotemporally controlled release of active proteins, making it an advanced biomaterial for the local treatment of bone diseases, for example, osteoporosis. The hydrogels are loaded with a recombinant Rho-inhibiting C3 toxin, C2IN-C3lim-G205C. This toxin selectively targets osteoclasts and inhibits Rho-signaling and, thereby, actin-dependent processes in these cells. Application of C2IN-C3lim-G205C toxin-loaded hydrogels effectively reduces osteoclast formation and resorption activity in vitro, as demonstrated by tartrate-resistant acid phosphatase staining and the pit resorption assay. Simultaneously, osteoblast activity, viability, and proliferation are unaffected, thus making C2IN-C3lim-G205C toxin-loaded hybrid hydrogels an attractive pharmacological system for spatial and selective modulation of osteoclast functions to reduce bone resorption.


Assuntos
ADP Ribose Transferases/química , Toxinas Botulínicas/química , DNA/química , Hidrogéis/química , Quinases Associadas a rho/metabolismo , ADP Ribose Transferases/genética , ADP Ribose Transferases/metabolismo , Animais , Toxinas Botulínicas/genética , Toxinas Botulínicas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Mutagênese Sítio-Dirigida , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Polietilenoglicóis/química , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia , Reologia , Albumina Sérica/química , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA