Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1828(9): 2074-82, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23714289

RESUMO

The mechanism underlying the ionophoric activity of CyPLOS (cyclic phosphate-linked oligosaccharide, 2), a carbohydrate-based synthetic ion transporter decorated with four tetraethylene glycol (TEG) chains, has been investigated by an integrated electron spin resonance (ESR) approach. The mode of interaction of the ionophore with lipid bilayers has been studied by quantitatively analyzing the perturbations in the ESR spectrum of an ad hoc synthesized spin-labeled CyPLOS analog (6), and, in parallel, in the spectra of spin-labeled lipids mixed with 2. The results point to a positioning of the cyclic saccharide backbone close to the lipid headgroups, largely exposed to the aqueous medium. The TEG chains, carrying a terminal benzyl group, are deeply inserted among the lipid acyl chains, showing good mobility and flexibility. As a consequence, the order of the acyl chain packing is significantly reduced, and water penetration in the bilayer is enhanced. The resulting asymmetric perturbation of the bilayer leads to its local destabilization, thus facilitating, through a non-specific mechanism, the ion transport through the membrane.


Assuntos
Ionóforos/química , Bicamadas Lipídicas/química , Oligossacarídeos/química , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Polietilenoglicóis/química , Ciclização , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Íons , Estrutura Molecular , Marcadores de Spin , Água/química
2.
Biochem J ; 452(3): 575-84, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23548202

RESUMO

LiP (lignin peroxidase) from Trametopsis cervina has an exposed catalytic tyrosine residue (Tyr181) instead of the tryptophan conserved in other lignin-degrading peroxidases. Pristine LiP showed a lag period in VA (veratryl alcohol) oxidation. However, VA-LiP (LiP after treatment with H2O2 and VA) lacked this lag, and H2O2-LiP (H2O2-treated LiP) was inactive. MS analyses revealed that VA-LiP includes one VA molecule covalently bound to the side chain of Tyr181, whereas H2O2-LiP contains a hydroxylated Tyr181. No adduct is formed in the Y171N variant. Molecular docking showed that VA binding is favoured by sandwich π stacking with Tyr181 and Phe89. EPR spectroscopy after peroxide activation of the pre-treated LiPs showed protein radicals other than the tyrosine radical found in pristine LiP, which were assigned to a tyrosine-VA adduct radical in VA-LiP and a dihydroxyphenyalanine radical in H2O2-LiP. Both radicals are able to oxidize large low-redox-potential substrates, but H2O2-LiP is unable to oxidize high-redox-potential substrates. Transient-state kinetics showed that the tyrosine-VA adduct strongly promotes (>100-fold) substrate oxidation by compound II, the rate-limiting step in catalysis. The novel activation mechanism is involved in ligninolysis, as demonstrated using lignin model substrates. The present paper is the first report on autocatalytic modification, resulting in functional alteration, among class II peroxidases.


Assuntos
Proteínas Fúngicas/química , Lignina/metabolismo , Peroxidases/química , Trametes/enzimologia , Tirosina/química , Ativação Enzimática/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Ligação Proteica/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
3.
J Phys Chem B ; 124(11): 2110-2115, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32105072

RESUMO

Spectroscopical characterization of melanins is a prior requirement for the efficient tailoring of their radical scavenging, ultraviolet-visible radiation absorption, metal chelation, and natural pigment properties. Electron paramagnetic resonance (EPR), exploiting the common persistent paramagnetism of melanins, represents the elective standard for the structural and dynamical characterization of their constituting radical species. Although melanins are mainly investigated using X-band (9.5 GHz) continuous wave (CW)-EPR, an integration with the application of Q-band (34 GHz) in CW and pulse EPR for the discrimination of melanin pigments of different compositions is presented here. The longitudinal relaxation times measured highlight faster relaxation rates for cysteinyldopa melanin, compared to those of the most common dopa melanin pigment, suggesting pulse EPR spin-lattice relaxation time measurements as a complementary tool for characterization of pigments of interest for biomimetic materials engineering.


Assuntos
Materiais Biocompatíveis , Melaninas , Espectroscopia de Ressonância de Spin Eletrônica
4.
J Mol Biol ; 354(2): 385-402, 2005 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-16246366

RESUMO

Versatile peroxidases (VP), a recently described family of ligninolytic peroxidases, show a hybrid molecular architecture combining different oxidation sites connected to the heme cofactor. High-resolution crystal structures as well as homology models of VP isoenzymes from the fungus Pleurotus eryngii revealed three possibilities for long-range electron transfer for the oxidation of high redox potential aromatic compounds. The possible pathways would start either at Trp164 or His232 of isoenzyme VPL, and at His82 or Trp170 of isoenzyme VPS1. These residues are exposed, and less than 11 A apart from the heme. With the purpose of investigating their functionality, two single mutations (W164S and H232F) and one double mutation (W164S/P76H) were introduced in VPL that: (i) removed the two pathways in this isoenzyme; and (ii) incorporated the absent putative pathway. Analysis of the variants showed that Trp164 is required for oxidation of two high redox potential model substrates (veratryl alcohol and Reactive Black 5), whereas the two other pathways (starting at His232 and His82) are not involved in long-range electron transfer (LRET). None of the mutations affected Mn2+ oxidation, which would take place at the opposite side of the enzyme. Substitution of Trp164 by His also resulted in an inactive variant, indicating that an indole side-chain is required for activity. It is proposed that substrate oxidation occurs via a protein-based radical. For the first time in a ligninolytic peroxidase such an intermediate species could be detected by low-temperature electron paramagnetic resonance of H2O2-activated VP, and was found to exist at Trp164 as a neutral radical. The H2O2-activated VP was self-reduced in the absence of reducing substrates. Trp164 is also involved in this reaction, which in the W164S variant was blocked at the level of compound II. When analyzing VP crystal structures close to atomic resolution, no hydroxylation of the Trp164 Cbeta atom was observed (even after addition of several equivalents of H2O2). This is in contrast to lignin peroxidase Trp171. Analysis of the crystal structures of both peroxidases showed differences in the environment of the protein radical-forming residue that could affect its reactivity. These variations would also explain differences found for the oxidation of some high redox potential aromatic substrates.


Assuntos
Peroxidases/química , Pleurotus/enzimologia , Transdução de Sinais , Catálise , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Peróxido de Hidrogênio/farmacologia , Hidroxilação , Lignina/metabolismo , Manganês/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação/genética , Oxirredução , Peroxidases/isolamento & purificação , Peroxidases/metabolismo , Conformação Proteica , Análise Espectral , Especificidade por Substrato
5.
J Biol Chem ; 284(12): 7986-94, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19158088

RESUMO

Lignin-degrading peroxidases, a group of biotechnologically interesting enzymes, oxidize high redox potential aromatics via an exposed protein radical. Low temperature EPR of Pleurotus eryngii versatile peroxidase (VP) revealed, for the first time in a fungal peroxidase, the presence of a tryptophanyl radical in both the two-electron (VPI) and the one-electron (VPII) activated forms of the enzyme. Site-directed mutagenesis was used to substitute this tryptophan (Trp-164) by tyrosine and histidine residues. No changes in the crystal structure were observed, indicating that the modified behavior was due exclusively to the mutations introduced. EPR revealed the formation of tyrosyl radicals in both VPI and VPII of the W164Y variant. However, no protein radical was detected in the W164H variant, whose VPI spectrum indicated a porphyrin radical identical to that of the inactive W164S variant. Stopped-flow spectrophotometry showed that the W164Y mutation reduced 10-fold the apparent second-order rate constant for VPI reduction (k(2app)) by veratryl alcohol (VA), when compared with over 50-fold reduction in W164S, revealing some catalytic activity of the tyrosine radical. Its first-order rate constant (k(2)) was more affected than the dissociation constant (K(D)(2)). Moreover, VPII reduction by VA was impaired by the above mutations, revealing that the Trp-164 radical was involved in catalysis by both VPI and VPII. The low first-order rate constant (k(3)) values were similar for the W164Y, W164H, and W164S variants, indicating that the tyrosyl radical in VPII was not able to oxidize VA (in contrast with that observed for VPI). VPII self-reduction was also suppressed, revealing that Trp-164 is involved in this autocatalytic process.


Assuntos
Elétrons , Radicais Livres/química , Proteínas Fúngicas/química , Peroxidase/química , Pleurotus/enzimologia , Triptofano/química , Substituição de Aminoácidos , Catálise , Proteínas Fúngicas/genética , Lignina/química , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Oxirredução , Peroxidase/genética , Pleurotus/genética , Triptofano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA