Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 113(8): 1702-10, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26803924

RESUMO

Lignocellulosic biomass has great potential for use as a carbon source for the production of second-generation biofuels by solventogenic bacteria. Here we describe the production of butanol by a newly discovered wild-type Clostridium species strain G117 with xylan as the sole carbon source for fermentation. Strain G117 produced 0.86 ± 0.07 g/L butanol and 53.4 ± 0.05 mL hydrogen directly from 60 g/L xylan provided that had undergone no prior enzymatic hydrolysis. After process optimization, the amount of butanol produced from xylan was increased to 1.24 ± 0.37 g/L. In contrast to traditional acetone-butanol-ethanol (ABE) solventogenic fermentation, xylan supported fermentation in strain G117 and negligible amount of acetone was produced. The expression of genes normally associated with acetone production (adc and ctfB2) were down-regulated compared to xylose fed cultures. This lack of acetone production may greatly simplify downstream separation process. Moreover, higher amount of butanol (2.94 g/L) was produced from 16.99 g/L xylo-oligosaccharides, suggesting a major role for strain G117 in butanol production from xylan and its oligosaccharides. The unique ability of strain G117 to produce a considerable amount of butanol directly from xylan without producing undesirable fermentation byproducts opens the door to the possibility of cost-effective biofuels production in a single step. Biotechnol. Bioeng. 2016;113: 1702-1710. © 2016 Wiley Periodicals, Inc.


Assuntos
Biocombustíveis , Butanóis/metabolismo , Clostridium/metabolismo , Xilanos/metabolismo , Acetona/análise , Acetona/metabolismo , Butanóis/análise , Hidrogênio/análise , Hidrogênio/metabolismo , Lignina/metabolismo , Microbiologia do Solo , Xilanos/análise , Xilose/análise , Xilose/metabolismo
2.
ACS Appl Bio Mater ; 4(5): 4119-4130, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35006826

RESUMO

Deciphering the most promising strategy for the evolution of microbial infection and inflammation-based therapeutics is one of the most challenging affairs to date. Development of peptide-based smart supergelators with innate antimicrobial and anti-inflammatory activities is an appealing way out. In this work, the hydrogelators Boc-δ-Ava-(X)-Phe-(Y)-Phe-OH (I: X = Y = L; II: X = L; Y = D; III: X = D; Y = L; IV: X = Y = D, Ava: δ-amino valeric acid) have been designed and fabricated by strategic chiral tuning to investigate the effect of alternation of configuration(s) of Phe residues in governing the fashion of self-aggregation and macroscopic properties of peptides. Interestingly, all of the molecules formed mechanoresponsive hydrogels under physiological conditions with a nanofibrillar network. The spectroscopic experiments confirmed the conformation of the hydrogelators to be supramolecular ß-sheets formed through the self-association of S-shaped constructs stabilized by noncovalent interactions. Indeed, the present work demonstrates a rational approach toward regulating the mechanical integrity of the hydrogels through systematic inclusion of d-amino acids at appropriate positions in the sequence. The hydrogelators were found to possess antimicrobial activity against both Gram-positive bacteria (Staphylococcus aureus and Streptococcus mutans) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumonia) while retaining their biocompatibility toward mammalian cells (as revealed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), hemolysis, and lipid peroxidation assays). These scaffolds also exhibited anti-inflammatory activities, as observed through in vitro MMP2/MMP9 inhibition studies and in vivo animal models, namely, the rat pouch model for acute inflammation. We anticipate that the discovery of these intelligent materials with multifunctional capabilities holds future promise as preferential therapeutics for the treatment of bacterial infections as well as associated inflammations arising alone or as side effects of biomaterial implants.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Bactérias/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Hidrogéis/farmacologia , Oligopeptídeos/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Teoria da Densidade Funcional , Hidrogéis/síntese química , Hidrogéis/química , Teste de Materiais , Camundongos , Testes de Sensibilidade Microbiana , Oligopeptídeos/síntese química , Oligopeptídeos/química , Tamanho da Partícula , Ratos
3.
Carbohydr Polym ; 207: 684-693, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30600054

RESUMO

Bacterial cellulose (BC) has been gaining importance over the past decades as a versatile material that finds applications in diverse industries. However, a secured supply is hindered by the slow production rate and batch-to-batch variability of the yield. Here, we report a rational approach for characterising the BC production process using Design of Experiment (DoE) methodology to study the impact of different parameters on desired process attributes. Notably, we found that the carbon source used for bacterial growth significantly impacts the interplay between the process variables and affects the desired outcomes. We therefore, propose that the highest priority process outcome in this study, the yield, is a function of the carbon source and optimal reactor design. Our systematic approach has achieved projected BC yields as high as ∼40 g/L for Gluconacetobacter hansenii 53582 grown on sucrose as the carbon source compared to the widely reported yields of ∼10 g/L.


Assuntos
Celulose/biossíntese , Acetobacteraceae/química , Acetobacteraceae/metabolismo , Celulose/química , Meios de Cultura , Fermentação , Gluconacetobacter/química , Gluconacetobacter/metabolismo , Glucose/metabolismo , Sacarose/metabolismo
4.
Sci Rep ; 8(1): 5780, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636541

RESUMO

Bacterial cellulose (BC) is a biocompatible material with versatile applications. However, its large-scale production is challenged by the limited biological knowledge of the bacteria. The advent of synthetic biology has lead the way to the development of BC producing microbes as a novel chassis. Hence, investigation on optimal growth conditions for BC production and understanding of the fundamental biological processes are imperative. In this study, we report a novel analytical platform that can be used for studying the biology and optimizing growth conditions of cellulose producing bacteria. The platform is based on surface growth pattern of the organism and allows us to confirm that cellulose fibrils produced by the bacteria play a pivotal role towards their chemotaxis. The platform efficiently determines the impacts of different growth conditions on cellulose production and is translatable to static culture conditions. The analytical platform provides a means for fundamental biological studies of bacteria chemotaxis as well as systematic approach towards rational design and development of scalable bioprocessing strategies for industrial production of bacterial cellulose.


Assuntos
Bactérias/metabolismo , Materiais Biocompatíveis , Celulose/biossíntese , Técnicas Microbiológicas/métodos , Técnicas de Cultura de Células/métodos , Gluconacetobacter/metabolismo
5.
Acta Biomater ; 10(1): 258-66, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24056098

RESUMO

Catheter-associated urinary tract infections (CAUTIs) are often preceded by pathogen colonization on catheter surfaces and are a major health threat facing hospitals worldwide. Antimicrobial peptides (AMPs) are a class of new antibiotics that hold promise in curbing CAUTIs caused by antibiotic-resistant pathogens. This study aims to systematically evaluate the feasibility of immobilizing two newly engineered arginine/lysine/tryptophan-rich AMPs with broad antimicrobial spectra and salt-tolerant properties on silicone surfaces to address CAUTIs. The peptides were successfully immobilized on polydimethylsiloxane and urinary catheter surfaces via an allyl glycidyl ether (AGE) polymer brush interlayer, as confirmed by X-ray photoelectron spectroscopy and water contact angle analyses. The peptide-coated silicone surfaces exhibited excellent microbial killing activity towards bacteria and fungi in urine and in phosphate-buffered saline. Although both the soluble and immobilized peptides demonstrated membrane disruption capabilities, the latter showed a slower rate of kill, presumably due to reduced diffusivity and flexibility resulting from conjugation to the polymer brush. The synergistic effects of the AGE polymer brush and AMPs prevented biofilm formation by repelling cell adhesion. The peptide-coated surface showed no toxicity towards smooth muscle cells. The findings of this study clearly indicate the potential for the development of AMP-based coating platforms to prevent CAUTIs.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos/farmacologia , Engenharia de Proteínas , Silicones/química , Cloreto de Sódio/farmacologia , Trifosfato de Adenosina/metabolismo , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Dimetilpolisiloxanos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/ultraestrutura , Proteínas Imobilizadas/farmacologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Espectroscopia Fotoeletrônica , Solubilidade , Staphylococcus aureus/efeitos dos fármacos , Cateteres Urinários , Molhabilidade/efeitos dos fármacos
6.
ACS Appl Mater Interfaces ; 5(13): 6412-22, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23758173

RESUMO

With the rapid rise of antibiotic-resistant-device-associated infections, there has been increasing demand for an antimicrobial biomedical surface. Synthetic antimicrobial peptides that have excellent bactericidal potency and negligible cytotoxicity are promising targets for immobilization on these target surfaces. An engineered arginine-tryptophan-rich peptide (CWR11) was developed, which displayed potent antimicrobial activity against a broad spectrum of microbes via membrane disruption, and possessed excellent salt resistance properties. A tethering platform was subsequently developed to tether CWR11 onto a model polymethylsiloxane (PDMS) surface using a simple and robust strategy. Surface characterization assays such as attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDX) confirmed the successful grafting of CWR11 onto the chemically treated PDMS surface. The immobilized peptide concentration was 0.8 ± 0.2 µg/cm(2) as quantitated by sulfosuccinimidyl-4-o-(4,4-dimethoxytrityl) butyrate (sulfo-SDTB) assay. Antimicrobial assay and cytotoxic investigation confirmed that the peptide-immobilized surface has good bactericidal and antibiofilm properties, and is also noncytotoxic to mammalian cells. Tryptophan-arginine-rich antimicrobial peptides have the potential for antimicrobial protection of biomedical surfaces and may have important clinical applications in patients.


Assuntos
Antibacterianos/química , Arginina/química , Biofilmes/efeitos dos fármacos , Peptídeos/química , Triptofano/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Arginina/farmacologia , Linhagem Celular , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Humanos , Peptídeos/síntese química , Peptídeos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Silicones/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Triptofano/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA