Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biomacromolecules ; 24(1): 246-257, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36464844

RESUMO

Poly(2-oxazoline)s (POx) have received substantial attention as poly(ethylene glycol) (PEG) alternatives in the biomedical field due to their biocompatibility, high functionality, and ease of synthesis. While POx have demonstrated strong potential as biomaterial constituents, the larger family of poly(cyclic imino ether)s (PCIE) to which POx belongs remains widely underexplored. One highly interesting sub-class of PCIE is poly(2,4-disubstituted-2-oxazoline)s (PdOx), which bear an additional substituent on the backbone of the polymers' repeating units. This allows fine-tuning of the hydrophilic/hydrophobic balance and renders the PdOx chiral when enantiopure 2-oxazoline monomers are used. Herein, we synthesize new water-soluble (R-/S-/RS-) poly(oligo(2-ethyl-4-methyl-2-oxazoline) methacrylate) (P(OEtMeOxMA)) bottlebrushes and compare them to well-established PEtOx- and PEG-based bottlebrush controls in terms of their physical properties, hydrophilicity, and biological behavior. We reveal that the P(OEtMeOxMA) bottlebrushes show a lower critical solution temperature behavior at a physiologically relevant temperature (∼44 °C) and that the enantiopure (R-/S-) variants display a chiral secondary structure. Importantly, we demonstrate the biocompatibility of the chiral P(OEtMeOxMA) bottlebrushes through cellular association and mouse biodistribution studies and show that these systems display higher immune cell association and organ accumulation than the two control polymers. These novel materials possess properties that hold promise for applications in the field of nanomedicine and may be beneficial carriers for therapeutics that require enhanced cellular association and immune cell interaction.


Assuntos
Oxazóis , Água , Camundongos , Animais , Distribuição Tecidual , Oxazóis/química , Polietilenoglicóis , Polímeros/química
2.
Biomacromolecules ; 21(8): 3318-3331, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32687312

RESUMO

In light of research reporting abnormal pharmacokinetic behavior for therapeutics and formulations containing poly(ethylene glycol) (PEG), a renewed emphasis has been placed on exploring alternative surrogate materials and tailoring specific materials to distinct nanomedicine applications. Poly(2-oxazolines) (POx) have shown great promise in this regard; however, a comparison of POx and PEG interactions with components of the immune system is needed to inform on their distinct suitability. Herein, the interaction of isolated immune cells following injection of hyperbranched polymers comprised of PEG or hydrophilic POx macromonomers was determined via flow cytometry. All materials showed similar association with all of the splenic immune cells analyzed. Interestingly, splenic CD68hi and CD11bhi macrophages showed similar levels of polymer association, despite CD11bhi being a smaller population, suggesting CD68 is linked to increased recognition and phagocytosis of these nanomaterials. This is of interest given that CD68 is a scavenger receptor and directly facilitates the clearance of cellular debris and promotion of phagocytosis, as opposed to CD11b, which is associated with the mediating inflammation via the production of cytokines as well as complement-mediated uptake of foreign particles. In the liver, PEG and poly(2-methyl oxazoline) hyperbranched polymers showed no discernible differences in their cellular association, while hyperbranched poly(2-ethyl oxazoline) showed increased association with dendrocytes and CD68hi macrophages, suggesting that this material exhibited a greater propensity to interact with components of the immune system. This work highlights the importance of how subtle changes in chemical structure can influence the immune response.


Assuntos
Oxazóis , Polietilenoglicóis , Polímeros/metabolismo , Distribuição Tecidual
3.
Macromol Rapid Commun ; 41(21): e2000294, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32935886

RESUMO

Novel conjugates that incorporate strategies for increasing the therapeutic payload, such as targeted polymeric delivery vehicles, have great potential in overcoming limitations of conventional antibody therapies that often exhibit immunogenicity and limited drug loading. Click chemistry has significantly expanded the toolbox of effective strategies for developing hybrid polymer-biomolecule conjugates, however, effective systems require orthogonality between the polymer and biomolecule chemistries to achieve efficient coupling. Here, three cycloaddition-based strategies for antibody conjugation to polymeric carriers are explored and show that a purely radical-based method for polymer synthesis and subsequent biomolecule attachment has a trade-off between coupling efficiency of the antibody and the ability to synthesize polymers with controlled chemical properties. It is shown that careful consideration of both coupling chemistries as well as the potential effect of how this modulates the chemical properties of the polymer nanocarrier should be considered during the development of such systems. The strategies described offer insight into improving conjugate development for therapeutic and theranostic applications. In this system, polymerization using conventional and established reversible addition fragmentation chain transfer (RAFT) agents, followed by multiple post-modification steps, always leads to systems with more defined chemical architectures compared to strategies that utilize alkyne-functional RAFT agents.


Assuntos
Aminoácidos , Polímeros , Química Click , Reação de Cicloadição , Polimerização
4.
Biomacromolecules ; 16(7): 2049-58, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-25997518

RESUMO

The synthesis of vinyl bromobutanoate (VBr), a new vinyl acetate monomer derivative obtained by the palladium-catalyzed vinyl exchange reaction between vinyl acetate (VAc) and 4-bromobutyric acid is reported. The homopolymerization of this new monomer using the RAFT/MADIX polymerization technique leads to the formation of novel well-defined and controlled polymers containing pendent bromine functional groups able to be modified via postpolymerization modification. Furthermore, the copolymerization of vinyl bromobutanoate with 2-methylene-1,3-dioxepane (MDO) was also performed to deliver a range of novel functional degradable copolymers, poly(MDO-co-VBr). The copolymer composition was shown to be able to be tuned to vary the amount of ester repeat units in the polymer backbone, and hence determine the degradability, while maintaining a control of the final copolymers' molar masses. The addition of functionalities via simple postpolymerization modifications such as azidation and the 1,3-dipolar cycloaddition of a PEG alkyne to an azide is also reported and proven by (1)H NMR spectroscopy, FTIR spectroscopy, and SEC analyses. These studies enable the formation of a novel class of hydrophilic functional degradable copolymers using versatile radical polymerization methods.


Assuntos
Materiais Biocompatíveis/síntese química , Oxepinas/química , Materiais Biocompatíveis/química , Reação de Cicloadição , Estrutura Molecular , Polimerização , Compostos de Vinila/química
5.
ACS Appl Bio Mater ; 4(3): 2675-2685, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014306

RESUMO

Improving our understanding of how design choices in materials synthesis impact biological outcomes is of critical importance in the development of nanomedicines. Here, we show that fluorophore labeling of polymer nanomedicine candidates significantly alters their transport and cell association in multi-cellular tumor spheroids and their penetration in breast cancer xenografts, dependent on the type of the fluorophore and their positioning within the macromolecular structure. These data show the critical importance of the biomaterials structure and architecture in their tissue distribution and intracellular trafficking, which in turn govern their potential therapeutic efficacy. The broader implication of these findings suggests that when developing materials for medical applications, great care should be taken early on in the design process as relatively simple choices may have downstream impacts that could potentially skew preclinical biology data.


Assuntos
Materiais Biocompatíveis/química , Corantes Fluorescentes/química , Polímeros/química , Esferoides Celulares/química , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacocinética , Células Cultivadas , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacocinética , Humanos , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Teste de Materiais , Camundongos , Estrutura Molecular , Nanomedicina , Tamanho da Partícula , Polímeros/síntese química , Polímeros/farmacocinética , Distribuição Tecidual
6.
Nat Commun ; 12(1): 446, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469013

RESUMO

Complex biological tissues are highly viscoelastic and dynamic. Efforts to repair or replace cartilage, tendon, muscle, and vasculature using materials that facilitate repair and regeneration have been ongoing for decades. However, materials that possess the mechanical, chemical, and resorption characteristics necessary to recapitulate these tissues have been difficult to mimic using synthetic resorbable biomaterials. Herein, we report a series of resorbable elastomer-like materials that are compositionally identical and possess varying ratios of cis:trans double bonds in the backbone. These features afford concomitant control over the mechanical and surface eroding degradation properties of these materials. We show the materials can be functionalized post-polymerization with bioactive species and enhance cell adhesion. Furthermore, an in vivo rat model demonstrates that degradation and resorption are dependent on succinate stoichiometry in the elastomers and the results show limited inflammation highlighting their potential for use in soft tissue regeneration and drug delivery.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Células 3T3 , Animais , Linhagem Celular , Elastômeros , Feminino , Humanos , Teste de Materiais , Células-Tronco Mesenquimais , Camundongos , Polimerização , Ratos , Estereoisomerismo , Propriedades de Superfície , Resistência à Tração
7.
ACS Nano ; 14(10): 13739-13753, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32936613

RESUMO

Integrating nanomaterials with biological entities has led to the development of diagnostic tools and biotechnology-derived therapeutic products. However, to optimize the design of these hybrid bionanomaterials, it is essential to understand how controlling the biological interactions will influence desired outcomes. Ultimately, this knowledge will allow more rapid translation from the bench to the clinic. In this paper, we developed a micellar system that was assembled using modular antibody-polymer amphiphilic materials. The amphiphilic nature was established using either poly(ethylene glycol) (PEG) or a single-chain variable fragment (scFv) from an antibody as the hydrophile and a thermoresponsive polymer (poly(oligoethylene glycol) methyl ether methacrylate) as the hydrophobe. By varying the ratios of these components, a series of nanoparticles with different antibody content was self-assembled, where the surface presentation of targeting ligand was carefully controlled. In vitro and in vivo analysis of these systems identified a mismatch between the optimal targeting ligand density to achieve maximum cell association in vitro compared to tumor accumulation in vivo. For this system, we determined an optimum antibody density for both longer circulation and enhanced targeting to tumors that balanced stealthiness of the particle (to evade immune recognition as determined in both mouse models and in whole human blood) with enhanced accumulation achieved through receptor binding on tumor cells in solid tumors. This approach provides fundamental insights into how different antibody densities affect the interaction of designed nanoparticles with both target cells and immune cells, thereby offering a method to probe the intricate interplay between increased targeting efficiency and the subsequent immune response to nanoparticles.


Assuntos
Micelas , Nanopartículas , Ligantes , Polietilenoglicóis , Polímeros
8.
ACS Nano ; 14(6): 7425-7434, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32401485

RESUMO

Incorporation of fluorinated moieties in polymeric nanoparticles has been shown in many instances to increase their uptake by living cells and, hence, has proven to be a useful approach to enhancing delivery to cells. However, it remains unclear how incorporation of fluorine affects critical transport processes, such as interactions with membranes, intracellular transport, and tumor penetration. In this study, we investigate the influence of fluorine on transport properties using a series of rationally designed poly(oligo(ethylene glycol) methyl ether acrylate)-block-perfluoropolyether (poly(OEGA)m-PFPE) copolymers. Copolymers with different fluorine contents were prepared and exhibit aggregate in solution in a manner dependent on the fluorine content. Doxorubicin-conjugated poly(OEGA)20-PFPE nanoparticles with lower fluorine content exist in solution as unimers, leading to greater exposure of hydrophobic PFPE segments to the cell surface. This, in turn, results in greater cellular uptake, deeper tumor penetration, as well as enhanced therapeutic efficacy compared to that with the micelle-state nanoaggregates (poly(OEGA)10-PFPE and poly(OEGA)5-PFPE) with higher fluorine content but with less PFPE exposed to the cell membranes. Our results demonstrate that the aggregation behavior of these fluorinated polymers plays a critical role in internalization and transport in living cells and 3D spheroids, providing important design criteria for the preparation of highly effective delivery agents.


Assuntos
Nanopartículas , Polímeros , Doxorrubicina/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Micelas , Polietilenoglicóis
9.
Biomater Sci ; 7(11): 4661-4674, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31469127

RESUMO

As polymeric nanomedicines grow increasingly complex in design, an effective therapeutic release is often inherently tied to localisation to specific intracellular compartments or microenvironments. The inclusion of environmentally-sensitive moieties links the functionality of such materials to the trafficking behaviours exhibited once materials have obtained access to the cellular milieu. In order to perform their designed function, such materials often need to encounter specific biological cues or stimuli. As such, there is an increased need to improve our understanding of how the physicochemical properties of nanomaterials influence post-internalisation behaviours. Amongst the unknown factors that may contribute to the trafficking behaviours and distribution of polymers within the cellular environment, is the influence of the components selected in the development of such materials. To examine whether composition and arrangement of components within small polymeric nanomaterials contribute to their ability to navigate the intracellular space, here we utilise fluorophores to model component selection, varying the fluorescent handle selected and its method of incorporation. We explore the intracellular behaviours of well-characterised hyperbranched polymers in live MDA-MB-468 breast cancer cells in vitro. Changes in distribution as a function of both fluorophore selection and placement are reported, and our data suggest that the individual components used to produce potential nanomedicines are critical to their overall functioning and efficacy. Further to this, through the use of a novel non-conjugated targeting ligand, we demonstrate that there is inherent competition between component-directing factors and cellular influences on the ultimate fate of the polymers. The behaviours reported here suggest that not only does component selection contribute to intracellular processing, but these factors could potentially be harnessed when designing polymers to ensure improved functionality of future materials for therapeutic delivery.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Polietilenoglicóis/farmacocinética , Neoplasias da Mama/diagnóstico por imagem , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Feminino , Citometria de Fluxo , Humanos , Microscopia Confocal , Imagem Óptica , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Distribuição Tecidual , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA