Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Chem Biol ; 14(5): 451-457, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29556105

RESUMO

Microbial toluene biosynthesis was reported in anoxic lake sediments more than three decades ago, but the enzyme catalyzing this biochemically challenging reaction has never been identified. Here we report the toluene-producing enzyme PhdB, a glycyl radical enzyme of bacterial origin that catalyzes phenylacetate decarboxylation, and its cognate activating enzyme PhdA, a radical S-adenosylmethionine enzyme, discovered in two distinct anoxic microbial communities that produce toluene. The unconventional process of enzyme discovery from a complex microbial community (>300,000 genes), rather than from a microbial isolate, involved metagenomics- and metaproteomics-enabled biochemistry, as well as in vitro confirmation of activity with recombinant enzymes. This work expands the known catalytic range of glycyl radical enzymes (only seven reaction types had been characterized previously) and aromatic-hydrocarbon-producing enzymes, and will enable first-time biochemical synthesis of an aromatic fuel hydrocarbon from renewable resources, such as lignocellulosic biomass, rather than from petroleum.


Assuntos
Bactérias/enzimologia , Microbiota , Tolueno/metabolismo , Acidobacteria/enzimologia , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Anaerobiose , Bactérias/genética , Biomassa , Carboxiliases/metabolismo , Catálise , Genes Bacterianos , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Lignina/química , Funções Verossimilhança , Metagenômica , Fenilacetatos/química , Filogenia , Proteômica , Proteínas Recombinantes/metabolismo , Esgotos/microbiologia
2.
Biotechnol Bioeng ; 116(8): 1909-1922, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30982958

RESUMO

Plants are an attractive sourceof renewable carbon for conversion to biofuels and bio-based chemicals. Conversion strategies often use a fraction of the biomass, focusing on sugars from cellulose and hemicellulose. Strategies that use plant components, such as aromatics and amino acids, may improve the efficiency of biomass conversion. Pseudomonas putida is a promising host for its ability to metabolize a wide variety of organic compounds. P. putida was engineered to produce methyl ketones, which are promising diesel blendstocks and potential platform chemicals, from glucose and lignin-related aromatics. Unexpectedly, P. putida methyl ketone production using Arabidopsis thaliana hydrolysates was enhanced 2-5-fold compared with sugar controls derived from engineered plants that overproduce lignin-related aromatics. This enhancement was more pronounced (~seven-fold increase) with hydrolysates from nonengineered switchgrass. Proteomic analysis of the methyl ketone-producing P. putida suggested that plant-derived amino acids may be the source of this enhancement. Mass spectrometry-based measurements of plant-derived amino acids demonstrated a high correlation between methyl ketone production and amino acid concentration in plant hydrolysates. Amendment of glucose-containing minimal media with a defined mixture of amino acids similar to those found in the hydrolysates studied led to a nine-fold increase in methyl ketone titer (1.1 g/L).


Assuntos
Aminoácidos/metabolismo , Cetonas/metabolismo , Lignina/metabolismo , Plantas/metabolismo , Pseudomonas putida/metabolismo , Arabidopsis/metabolismo , Biocombustíveis/microbiologia , Hidrólise , Microbiologia Industrial , Metilação , Panicum/metabolismo
3.
Appl Environ Microbiol ; 79(14): 4433-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23686271

RESUMO

Ralstonia eutropha is a facultatively chemolithoautotrophic bacterium able to grow with organic substrates or H2 and CO2 under aerobic conditions. Under conditions of nutrient imbalance, R. eutropha produces copious amounts of poly[(R)-3-hydroxybutyrate] (PHB). Its ability to utilize CO2 as a sole carbon source renders it an interesting new candidate host for the production of renewable liquid transportation fuels. We engineered R. eutropha for the production of fatty acid-derived, diesel-range methyl ketones. Modifications engineered in R. eutropha included overexpression of a cytoplasmic version of the TesA thioesterase, which led to a substantial (>150-fold) increase in fatty acid titer under certain conditions. In addition, deletion of two putative ß-oxidation operons and heterologous expression of three genes (the acyl coenzyme A oxidase gene from Micrococcus luteus and fadB and fadM from Escherichia coli) led to the production of 50 to 65 mg/liter of diesel-range methyl ketones under heterotrophic growth conditions and 50 to 180 mg/liter under chemolithoautotrophic growth conditions (with CO2 and H2 as the sole carbon source and electron donor, respectively). Induction of the methyl ketone pathway diverted substantial carbon flux away from PHB biosynthesis and appeared to enhance carbon flux through the pathway for biosynthesis of fatty acids, which are the precursors of methyl ketones.


Assuntos
Proteínas de Bactérias/genética , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Regulação Bacteriana da Expressão Gênica , Hidroxibutiratos/metabolismo , Cetonas/metabolismo , Poliésteres/metabolismo , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Crescimento Quimioautotrófico , Escherichia coli/genética , Ácidos Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Engenharia Genética , Processos Heterotróficos , Micrococcus luteus/genética , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA