RESUMO
OBJECTIVES: To develop a 3D-printed, microparticulate hydrogel supplemented with dentin matrix molecules (DMM) as a novel regenerative strategy for dental pulp capping. MATERIALS AND METHODS: Gelatin methacryloyl microgels (7% w/v) mixed with varying concentrations of DMM were printed using a digital light projection 3D printer and lyophilized for 2 days. The release profile of the DMM-loaded microgels was measured using a bicinchoninic acid assay. Next, dental pulp exposure defects were created in maxillary first molars of Wistar rats. The exposures were randomly capped with (1) inert material - negative control, (2) microgels, (3) microgels + DMM 500 µg/ml, (4) microgels + DMM 1000 µg/ml, (5) microgels + platelet-derived growth factor (PDGF 10 ng/ml), or (6) MTA (n = 15/group). After 4 weeks, animals were euthanized, and treated molars were harvested and then processed to evaluate hard tissue deposition, pulp tissue organization, and blood vessel density. RESULTS: All the specimens from groups treated with microgel + 500 µg/ml, microgel + 1000 µg/ml, microgel + PDGF, and MTA showed the formation of organized pulp tissue, tertiary dentin, newly formed tubular and atubular dentin, and new blood vessel formation. Dentin bridge formation was greater and pulp necrosis was less in the microgel + DMM groups compared to MTA. CONCLUSIONS: The 3D-printed photocurable microgels doped with DMM exhibited favorable cellular and inflammatory pulp responses, and significantly more tertiary dentin deposition. CLINICAL RELEVANCE: 3D-printed microgel with DMM is a promising biomaterial for dentin and dental pulp regeneration in pulp capping procedures.
Assuntos
Dentina Secundária , Microgéis , Agentes de Capeamento da Polpa Dentária e Pulpectomia , Ratos , Animais , Polpa Dentária , Compostos de Cálcio/uso terapêutico , Capeamento da Polpa Dentária/métodos , Materiais Biocompatíveis , Silicatos/uso terapêutico , Ratos Wistar , Regeneração , Impressão Tridimensional , Combinação de Medicamentos , Óxidos/uso terapêuticoRESUMO
BACKGROUND: Oral mucosa equivalents (OMEs) have been used as in vitro models (eg, for studies of human oral mucosa biology and pathology, toxicological and pharmacological tests of oral care products), and clinically to treat oral defects. However, the human oral mucosa is a highly vascularized tissue and implantation of large OMEs can fail due to a lack of vascularization. To develop equivalents that better resemble the human oral mucosa and increase the success of implantation to repair large-sized defects, efforts have been made to prevascularize these constructs. PURPOSE: The aim of this narrative review is to provide an overview of the human oral mucosa structure, common approaches for its reconstruction, and the development of OMEs, their prevascularization, and in vitro and clinical potential applications. STUDY SELECTION: Articles on non-prevascularized and prevascularized OMEs were included, since the development and applications of non-prevascularized OMEs are a foundation for the design, fabrication, and optimization of prevascularized OMEs. CONCLUSIONS: Several studies have reported the development and in vitro and clinical applications of OMEs and only a few were found on prevascularized OMEs using different approaches of fabrication and incorporation of endothelial cells, indicating a lack of standardized protocols to obtain these equivalents. However, these studies have shown the feasibility of prevascularizing OMEs and their implantation in animal models resulted in enhanced integration and healing. Vascularization in tissue equivalents is still a challenge, and optimization of cell culture conditions, biomaterials, and fabrication techniques along with clinical studies is required.
Assuntos
Mucosa Bucal , Engenharia Tecidual , Animais , Materiais Biocompatíveis , Células Endoteliais , Humanos , Neovascularização Fisiológica , Engenharia Tecidual/métodosRESUMO
mRNA therapeutics have increased in popularity, largely due to the transient and fast nature of protein expression and the low risk of off-target effects. This has increased drastically with the remarkable success of mRNA-based vaccines for COVID-19. Despite advances in lipid nanoparticle (LNP)-based delivery, the mechanisms that regulate efficient endocytic trafficking and translation of mRNA remain poorly understood. Although it is widely acknowledged that the extracellular matrix (ECM) regulates uptake and expression of exogenous nano-complexed genetic material, its specific effects on mRNA delivery and expression have not yet been examined. Here, we demonstrate a critical role for matrix stiffness in modulating both mRNA transfection and expression and uncover distinct mechano-regulatory mechanisms for endocytosis of mRNA through RhoA mediated mTOR signaling and cytoskeletal dynamics. Our findings have implications for effective delivery of therapeutic mRNA to targeted tissues that may be differentially affected by tissue and matrix stiffness.
Assuntos
COVID-19 , Nanopartículas , COVID-19/terapia , Vacinas contra COVID-19 , Humanos , Hidrogéis , Lipídeos/genética , Lipossomos , RNA Mensageiro/genéticaRESUMO
AIMS: The structural organization of collagen from mineralized tissues, such as dentin and bone, has been a topic of debate in the recent literature. Recent reports have presented novel interpretations of the complexity of collagen type I at different hierarchical levels and in different tissues. Here, we investigate the nanostructural organization of demineralized dentin collagen following the digestion of non-collagenous components with a trypsin enzyme. MATERIALS AND METHODS: Dentin specimens were obtained from healthy third-molars, cut into small cubes, and polished down to 1 µm roughness. Samples were then demineralized with 10% citric acid for 2 min. Selected specimens were further treated with a solution containing 1 mg/ml trypsin for 48 hours at 37 °C (pH 7.9-9.0). Both untreated and trypsin digested samples were analyzed using SDS-PAGE, Field Emission Scanning Electron Microscopy (FE-SEM), and nanoindentation, where surface hardness and creep properties were compared before and after treatments. RESULTS: FE-SEM images of demineralized dentin showed the banded morphology of D-periodical collagen type I, which upon enzymatic digestion with trypsin appeared to dissociate longitudinally, consistently unraveling ~20 nm structures (microfibril bundles). Such nanoscale structures, to the best of our knowledge, have not been characterized in dentin previously. Mechanical characterization via nanoindentation showed that the unraveling of such microfibril bundles affected the creep displacement and creep rate of demineralized dentin. CONCLUSION: In summary, our results provide novel evidence of the organization of collagen type I from dentin, which may have important implications for the interaction of dental materials with the organic dentin matrix and the mechanical properties of mineralized tissues.
Assuntos
Colágeno Tipo I/química , Dentina/química , Matriz Extracelular/química , Dente Molar/química , Matriz Extracelular/ultraestrutura , Humanos , Dente Molar/ultraestruturaRESUMO
Survival of functional tissue constructs of clinically relevant size depends on the formation of an organized and uniformly distributed network of blood vessels and capillaries. The lack of such vasculature leads to spatio-temporal gradients in oxygen, nutrients and accumulation of waste products inside engineered tissue constructs resulting in negative biological events at the core of the scaffold. Unavailability of a well-defined vasculature also results in ineffective integration of scaffolds to the host vasculature upon implantation. Arguably, one of the greatest challenges in engineering clinically relevant bone substitutes, therefore, has been the development of vascularized bone scaffolds. Various approaches ranging from peptide and growth factor functionalized biomaterials to hyper-porous scaffolds have been proposed to address this problem with reasonable success. An emerging alternative to address this challenge has been the fabrication of pre-vascularized scaffolds by taking advantage of biomanufacturing techniques, such as soft- and photo-lithography or 3D bioprinting, and cell-based approaches, where functional capillaries are engineered in cell-laden scaffolds prior to implantation. These strategies seek to engineer pre-vascularized tissues in vitro, allowing for improved anastomosis with the host vasculature upon implantation, while also improving cell viability and tissue development in vitro. This book chapter provides an overview of recent methods to engineer pre-vascularized scaffolds for bone regeneration. We first review the development of functional blood capillaries in bony structures and discuss controlled delivery of growth factors, co-culture systems, and on-chip studies to engineer vascularized cell-laden biomaterials. Lastly, we review recent studies using microfabrication techniques and 3D printing to engineer pre-vascularized scaffolds for bone tissue engineering.
Assuntos
Regeneração Óssea/fisiologia , Osso e Ossos/fisiologia , Neovascularização Fisiológica/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Materiais Biocompatíveis/metabolismo , Osso e Ossos/irrigação sanguínea , Osso e Ossos/citologia , Técnicas de Cocultura/métodos , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Engenharia Tecidual/tendênciasRESUMO
Bone defects may occur in different sizes and shapes due to trauma, infections, and cancer resection. Autografts are still considered the primary treatment choice for bone regeneration. However, they are hard to source and often create donor-site morbidity. Injectable microgels have attracted much attention in tissue engineering and regenerative medicine due to their ability to replace inert implants with a minimally invasive delivery. Here, we developed novel cell-laden bioprinted gelatin methacrylate (GelMA) injectable microgels, with controllable shapes and sizes that can be controllably mineralized on the nanoscale, while stimulating the response of cells embedded within the matrix. The injectable microgels were mineralized using a calcium and phosphate-rich medium that resulted in nanoscale crystalline hydroxyapatite deposition and increased stiffness within the crosslinked matrix of bioprinted GelMA microparticles. Next, we studied the effect of mineralization in osteocytes, a key bone homeostasis regulator. Viability stains showed that osteocytes were maintained at 98 % viability after mineralization with elevated expression of sclerostin in mineralized compared to non-mineralized microgels, showing that mineralization can effectively enhances osteocyte maturation. Based on our findings, bioprinted mineralized GelMA microgels appear to be an efficient material to approximate the bone microarchitecture and composition with desirable control of sample injectability and polymerization. These bone-like bioprinted mineralized biomaterials are exciting platforms for potential minimally invasive translational methods in bone regenerative therapies.
Assuntos
Gelatina , Microgéis , Gelatina/farmacologia , Gelatina/química , Materiais Biocompatíveis , Metacrilatos/químicaRESUMO
Bone autografts remain the gold standard for bone grafting surgeries despite having increased donor site morbidity and limited availability. Bone morphogenetic protein-loaded grafts represent another successful commercial alternative. However, the therapeutic use of recombinant growth factors has been associated with significant adverse clinical outcomes. This highlights the need to develop biomaterials that closely approximate the structure and composition of bone autografts, which are inherently osteoinductive and biologically active with embedded living cells, without the need for added supplements. Here, injectable growth factor-free bone-like tissue constructs are developed, that closely approximate the cellular, structural, and chemical composition of bone autografts. It is demonstrated that these micro-constructs are inherently osteogenic, and demonstrate the ability to stimulate mineralized tissue formation and regenerate bone in critical-sized defects in-vivo. Furthermore, the mechanisms that allow human mesenchymal stem cells (hMSCs) to be highly osteogenic in these constructs, despite the lack of osteoinductive supplements, are assessed, whereby Yes activated protein (YAP) nuclear localization and adenosine signaling appear to regulate osteogenic cell differentiation. The findings represent a step toward a new class of minimally invasive, injectable, and inherently osteoinductive scaffolds, which are regenerative by virtue of their ability to mimic the tissue cellular and extracellular microenvironment, thus showing promise for clinical applications in regenerative engineering.
Assuntos
Microgéis , Humanos , Regeneração Óssea/fisiologia , Osteogênese/fisiologia , Osso e Ossos , Materiais Biocompatíveis/química , Diferenciação Celular/fisiologia , Engenharia Tecidual , Alicerces Teciduais/químicaRESUMO
Successful integration of cell-laden tissue constructs with host vasculature depends on the presence of functional capillaries to provide oxygen and nutrients to the embedded cells. However, diffusion limitations of cell-laden biomaterials challenge regeneration of large tissue defects that require bulk-delivery of hydrogels and cells. Herein, a strategy to bioprint geometrically controlled, endothelial and stem-cell laden microgels in high-throughput is introduced, allowing these cells to form mature and functional pericyte-supported vascular capillaries in vitro, and then injecting these pre-vascularized constructs minimally invasively in-vivo. It is demonstrated that this approach offers both desired scalability for translational applications as well as unprecedented levels of control over multiple microgel parameters to design spatially-tailored microenvironments for better scaffold functionality and vasculature formation. As a proof-of-concept, the regenerative capacity of the bioprinted pre-vascularized microgels is compared with that of cell-laden monolithic hydrogels of the same cellular and matrix composition in hard-to-heal defects in vivo. The results demonstrate that the bioprinted microgels have faster and higher connective tissue formation, more vessels per area, and widespread presence of functional chimeric (human and murine) vascular capillaries across regenerated sites. The proposed strategy, therefore, addresses a significant issue in regenerative medicine, demonstrating a superior potential to facilitate translational regenerative efforts.
Assuntos
Bioimpressão , Microgéis , Camundongos , Humanos , Animais , Engenharia Tecidual/métodos , Bioimpressão/métodos , Materiais Biocompatíveis , Hidrogéis , Alicerces Teciduais , Impressão TridimensionalRESUMO
Dental caries is a biofilm-mediated, diet-modulated, multifactorial and dynamic disease that affects more than 90% of adults in Western countries. The current treatment for decayed tissue is based on using materials to replace the lost enamel or dentin. More than 500 million dental restorations are placed annually worldwide, and materials used for these purposes either directly or indirectly interact with dentin and pulp tissues. The development and understanding of the effects of restorative dental materials are based on different in-vitro and in-vivo tests, which have been evolving with time. In this review, we first discuss the characteristics of the tooth and the dentin-pulp interface that are unique for materials testing. Subsequently, we discuss frequently used in-vitro tests to evaluate the biocompatibility of dental materials commonly used for restorative procedures. Finally, we present our perspective on the future directions for biological research on dental materials using tissue engineering and organs on-a-chip approaches. STATEMENT OF SIGNIFICANCE: Dental caries is still the most prevalent infectious disease globally, requiring more than 500 million restorations to be placed every year. Regrettably, the failure rates of such restorations are still high. Those rates are partially based on the fact that current platforms to test dental materials are somewhat inaccurate in reproducing critical components of the complex oral microenvironment. Thus, there is a collective effort to develop new materials while evolving the platforms to test them. In this context, the present review critically discusses in-vitro models used to evaluate the biocompatibility of restorative dental materials and brings a perspective on future directions for tissue-engineered and organs-on-a-chip platforms for testing new dental materials.
Assuntos
Cárie Dentária , Dentina , Adulto , Resinas Compostas , Materiais Dentários/farmacologia , Restauração Dentária Permanente , Humanos , Dispositivos Lab-On-A-Chip , Teste de MateriaisRESUMO
OBJECTIVES: Self-assembling peptide P11-4 is amphiphilic and pH-triggered, effective on repairing early enamel carious lesions and dentin remineralization. However, P11-4 effects on dentin biomineralization and repair ability remain unexplored. Thus, cytocompatibility and effectiveness of P11-4 on inducing mineralization and migration of odontoblast-like cells (MDPC-23) were investigated. METHODS: MDPC-23 were seeded in contact with P11-4 (0.5 and 1 µg/ml), Dentin Matrix Protein 1 (DMP1 0.5 and 1 µg/ml) or Calcium hydroxide (Ca(OH)2 100 µg/ml) solutions. Cell viability was verified using MTT (n = 6/group). Mineral deposition was tested using Alizarin Red (n = 4/group). Cell migration was assessed by light microscopy (n = 2/group). MTT and Alizarin Red data were compared using Kruskal-Wallis and Mann-Whitney (α=0.01). RESULTS: P11-4 (0.5 and 1 µg/ml) and DMP1 (0.5 and 1 µg/ml) resulted the highest cell viability; Ca(OH)2 presented the lowest. 1 µg/ml DMP1 and 1 µg/ml P11-4 promoted the highest mineral deposition. Ca(OH)2 presented lower values of mineral deposits than DMP1 1 µg/ml (p < 0.01), but similar to P11-4 1 µg/ml. P11-4 and DMP1 at 0.5 µg/ml induced lesser mineral precipitation than P11-4 and DMP1 at 1 µg/ml (p < 0.01), with no difference to Ca(OH)2. All materials stimulated cell migration, however, lower concentrations of DMP1 and P11-4 demonstrated a higher migration potential. CONCLUSION: P11-4 did not affect cell viability, induces mineral deposition and MDPC-23 migration like DMP1. CLINICAL SIGNIFICANCE: Self-assembling peptide P11-4 does not affect the cell viability and induces mineral deposition comparable to native protein involved in biomineralization. Combined with its ability to bind type I collagen, P11-4 is a promising bioinspired molecule that provides native-tissue conditions and foster further studies on its ability to form dentin bridges in pulp-capping strategies.
Assuntos
Glicosiltransferases , Odontoblastos , Movimento Celular , Esmalte Dentário/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fosfoproteínas/metabolismoRESUMO
OBJECTIVES: To determine the impact of treating caries-affected dentin (CAD) with: 0.2% sodium fluoride (NaF), casein phosphopeptide-amorphous calcium phosphate (CPP-ACP/MI Paste™) or peptide P11-4 (Curodont™ Repair) on the longevity of resin/CAD interface at storage times of 24 -h, 6- and 18-month. METHODS: 255 caries-free third molars were used, and CAD was produced by a biological method. The teeth were randomly distributed into: G1- Sound dentin (SD); G2- CAD; G3- CAD + 0.2% NaF (CAD/NaF); G4- CAD + CPP-ACP (CAD/ACP); G5- CAD + Curodont™ Repair (CAD/P11-4). The Filtek Z350 composite resin block was bonded to dentin using Adper™ Single 2 (4 mm/height). Resin/dentin blocks were stored in a solution of Simulated Body Fluid at 37 °C, pressures were modified to simulate natural pulpal pressures. Specimens were investigated by microtensile bond strength (µTBS) (n = 8), Scanning Electron Microscopy (to assess the failure mode) (n = 8), nanoinfiltration (to assess the interface sealing) (n = 3), in situ zymography (to assess the gelatinolytic activity) (n = 3) and micro-computed microtomography (µ-CT) (to assess the mineralization) (n = 3). Data from µTBS, µ-CT and, nanoinfiltration and hybrid layer formation/degradation were submitted to two-way ANOVA and Tukey tests, and failure patterns and in situ zymography to Kruskal-Wallis and Dunn tests (α = 5%). RESULTS: The highest mineral density change by µ-CT, smallest silver nitrate infiltration and proteolytic activity in the adhesive layer were obtained significantly for the groups SD, CAD/ACP and CAD/P11-4, with most mixed fractures at 18-month (p < 0.001). CAD/NaF showed significantly similar values to CAD, CAD and CAD/NaF which presented a high percentage of adhesive fracture (p < 0.001) at all time periods. SIGNIFICANCE: Treating caries-affected dentin with remineralizing agents CPP-ACP and Curodont™ Repair, has the potential to be a clinically relevant treatment protocol to increase the longevity of adhesive restorations.
Assuntos
Colagem Dentária , Adesivos Dentinários , Biomineralização , Cimentos Dentários , Dentina , Seguimentos , Teste de Materiais , Cimentos de Resina , Resistência à TraçãoRESUMO
INTRODUCTION: The dental pulp is highly vascularized and innervated tissue that is uniquely designed, being highly biologically active, while being enclosed within the calcified structure of the tooth. It is well-established that the dental pulp vasculature is a key requirement for the functional performance of the tooth. Therefore, controlled regeneration of the dental pulp vasculature is a challenge that must be met for future regenerative endeavors in endodontics. METHODS: In this perspective review, we address recent progress and challenges on the use of microengineering methods and biomaterials scaffolds to fabricate the dental pulp vascular microenvironment. RESULTS: The conditions required to control the growth and differentiation of vascular capillaries are discussed, together with the conditions required for the formation of mature and stable pericyte-supported microvascular networks in 3-dimensional hydrogels and fabricated microchannels. Recent biofabrication methods, such as 3-dimensional bioprinting and micromolding are also discussed. Moreover, recent advances in the field of organs-on-a-chip are discussed regarding their applicability to dental research and endodontic regeneration. CONCLUSION: Collectively, this short review offers future directions in the field that are presented with the objective of pointing toward successful pathways for successful clinical and translational strategies in regenerative endodontics, with especial emphasis on the dental pulp vasculature.
Assuntos
Polpa Dentária , Dente , Diferenciação Celular , Regeneração , Endodontia Regenerativa , Engenharia TecidualRESUMO
INTRODUCTION: An understanding of the extracellular matrix characteristics which stimulate and guide stem cell differentiation in the dental pulp is fundamental for the development of enhanced dental regenerative therapies. Our objectives, in this study, were to determine whether stem cells from the apical papilla (SCAP) responded to substrate stiffness, whether hydrogels providing micropatterned topographical cues stimulate SCAP self-alignment, and whether the resulting alignment could influence their differentiation towards an odontogenic lineage in-vitro. METHODS: Experiments utilized gelatin methacryloyl (GelMA) hydrogels of increasing concentrations (5, 10 and 15%). We determined their compressive modulus via unconfined compression and analyzed cell spreading via F-actin/DAPI immunostaining. GelMA hydrogels were micropatterned using photolithography, in order to generate microgrooves and ridges of 60 and 120µm, onto which SCAP were seeded and analyzed for self-alignment via fluorescence microscopy. Lastly, we analyzed the odontogenic differentiation of SCAP using alkaline phosphatase protein expression (ANOVA/Tukey α=0.05). RESULTS: SCAP appeared to proliferate better on stiffer hydrogels. Both 60 and 120µm micropatterned hydrogels guided the self-alignment of SCAP with no significant difference between them. Similarly, both 60 and 120µm micropattern aligned cells promoted higher odontogenic differentiation than non-patterned controls. SIGNIFICANCE: In summary, both substrate mechanics and geometry have a statistically significant influence on SCAP response, and may assist in the odontogenic differentiation of dental stem cells. These results may point toward the fabrication of cell-guiding scaffolds for regenerative endodontics, and may provide cues regarding the development of the pulp-dentin interface during tooth formation.
Assuntos
Hidrogéis , Odontogênese , Diferenciação Celular , Proliferação de Células , Papila Dentária , Polpa Dentária , Células-TroncoRESUMO
The objective of this study was to investigate the controlled release of two growth factors (BMP-2 and VEGF) as a treatment strategy for bone healing in clinically challenging composite injuries, consisting of a femoral segmental bone defect and volumetric muscle loss. This is the first investigation of dual growth factor delivery in a composite injury model using an injectable delivery system consisting of heparin microparticles and alginate gel. The loading efficiency of growth factors into these biomaterials was found to be >90%, revealing a strong affinity of VEGF and BMP-2 to heparin and alginate. The system could achieve simultaneous or tunable release of VEGF and BMP-2 by varying the loading strategy. Single growth factor delivery (VEGF or BMP-2 alone) significantly enhanced vascular growth in vitro. However, no synergistic effect was observed for dual growth factor (BMP-2 + VEGF) delivery in vitro. Effective bone healing was achieved in all treatment groups (BMP-2, simultaneous or tunable delivery of BMP-2 and VEGF) in the composite injury model. The mechanics of the regenerated bone reached a maximum strength of ~52% of intact bone with tunable delivery of VEGF and BMP-2. Overall, simultaneous or tunable co-delivery of low-dose BMP-2 and VEGF failed to fully restore the mechanics of bone in this injury model. Given the severity of the composite injury, VEGF alone may not be sufficient to establish mature and stable blood vessels when compared with previous studies co-delivering BMP-2+VEGF enhanced bone tissue regeneration. Hence, future studies are warranted to develop an alternative treatment strategy focusing on better control over growth factor dose, spatiotemporal delivery, and additional growth factors to regenerate fully functional bone tissue. STATEMENT OF SIGNIFICANCE: We have developed an injectable delivery system consisting of heparin microparticles and an alginate hydrogel that is capable of delivering multiple growth factors in a tunable manner. We used this delivery system to deliver BMP-2 and VEGF in a rodent model of composite bone-muscle injury that mimics clinical type III open fractures. An advanced treatment strategy is necessary for these injuries in order to avoid the negative side effects of high doses of growth factors and because it has been shown that the addition of a muscle injury in this model attenuates the bone regenerative effect of BMP-2. This is the first study to test the effects of dual growth factor delivery (BMP-2/VEGF) on bone healing in a composite bone-muscle injury model and is expected to open up new directions in protein delivery for regenerative medicine.
Assuntos
Proteína Morfogenética Óssea 2 , Regeneração Óssea , Materiais Biocompatíveis , Osso e Ossos , Hidrogéis , MúsculosRESUMO
Engineered tissue constructs require the fabrication of highly perfusable and mature vascular networks for effective repair and regeneration. In tissue engineering, stem cells are widely employed to create mature vascularized tissues in vitro. Pericytes are key to the maturity of these vascular networks, and therefore the ability of stem cells to differentiate into pericyte-like lineages should be understood. To date, there is limited information regarding the ability of stem cells from the different tissue sources to differentiate into pericytes and form microvascular capillaries in vitro. Therefore, here we tested the ability of the stem cells derived from bone marrow (BMSC), dental pulp (DPSC) and dental apical papilla (SCAP) to engineer pericyte-supported vascular capillaries when encapsulated along with human umbilical vein endothelial cells (HUVECs) in gelatin methacrylate (GelMA) hydrogel. Our results show that the pericyte differentiation capacity of BMSC was greater with high expression of α-SMA and NG2 positive cells. DPSC had α-SMA positive cells but showed very few NG2 positive cells. Further, SCAP cells were positive for α-SMA while they completely lacked NG2 positive cells. We found the pericyte differentiation ability of these stem cells to be different, and this significantly affected the vasculogenic ability and quality of the vessel networks. In summary, we conclude that, among stem cells from different craniofacial regions, BMSCs appear more suitable for engineering of mature vascularized networks than DPSCs or SCAPs.
Assuntos
Capilares , Diferenciação Celular/fisiologia , Polpa Dentária/citologia , Hidrogéis , Pericitos/citologia , Células-Tronco/citologia , Engenharia Tecidual/métodos , Proliferação de Células/fisiologia , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica/fisiologiaRESUMO
The tooth has a unique configuration with respect to biomaterials that are used for its treatment. Cells inside of the dental pulp interface indirectly with biomaterials via a calcified permeable membrane, formed by the dentin matrix and several thousands of dentinal tubules (â¼2 µm in diameter). Although the cytotoxic response of the dental pulp to biomaterials has been extensively studied, there is a shortage of in vitro model systems that mimic the dentin-pulp interface and enable an improved understanding of the morphologic, metabolic and functional influence of biomaterials on live dental pulp cells. To address this shortage, here we developed an organ-on-a-chip model system which integrates cells cultured directly on a dentin wall within a microfluidic device that replicates some of the architecture and dynamics of the dentin-pulp interface. The tooth-on-a-chip is made out of molded polydimethylsiloxane (PDMS) with a design consisting of two chambers separated by a dentin fragment. To characterize pulp cell responses to dental materials on-chip, stem cells from the apical papilla (SCAPs) were cultured in odontogenic medium and seeded onto the dentin surface, and observed using live-cell microscopy. Next, to evaluate the tooth-on-a-chip as a platform for materials testing, standard dental materials used clinically (2-hydroxyethylmethacrylate - HEMA, phosphoric acid - PA, and Adper-Scotchbond - SB) were tested for cytotoxicity, cell morphology, and metabolic activity on-chip, and compared against standardized off-chip controls. All dental materials had cytotoxic effects in both on-chip and off-chip systems in the following order: HEMA > SB > PA (p < 0.05), and cells presented consistently higher metabolic activity on-chip than off-chip (p < 0.05). Furthermore, the tooth-on-a-chip enabled real-time tracking of gelatinolytic activity in a model hybrid layer (HL) formed in the microdevice, which suggests that dental pulp cells may contribute to the proteolytic activity in the HL more than endogenous proteases. In conclusion, the tooth-on-a-chip is a novel platform that replicates near-physiologic conditions of the pulp-dentin interface and enables live-cell imaging to study dental pulp cell response to biomaterials.
Assuntos
Materiais Biocompatíveis/metabolismo , Dispositivos Lab-On-A-Chip , Metacrilatos/metabolismo , Ácidos Fosfóricos/metabolismo , Cimentos de Resina/metabolismo , Dente/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dimetilpolisiloxanos/química , Humanos , Metacrilatos/química , Metacrilatos/farmacologia , Imagem Óptica , Tamanho da Partícula , Ácidos Fosfóricos/química , Ácidos Fosfóricos/farmacologia , Cimentos de Resina/química , Cimentos de Resina/farmacologia , Propriedades de Superfície , Dente/químicaRESUMO
OBJECTIVE: To compare proteomics and biological function of human dentin matrix molecules (hDMMs) and bovine dentin matrix molecules (bDMMs). DESIGN: Dentin powder from human or bovine teeth (nâ¯=â¯4) was demineralized in 10% (v/v) ethylenediaminetetraacetic acid for 7 days. The extracts were dialyzed, lyophilized and proteins were characterized using liquid chromatography-tandem mass spectrometry and shotgun proteomic analysis. To study biological function, mouse-derived undifferentiated dental pulp cells (OD21) were treated with 0.01, 0.1 or 1⯵g/mL of hDMMs or bDMMs and proliferation was measured after 24â¯hours and 48â¯hours using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell migration was assessed after 24â¯hours using a Boyden chamber. Alizarin Red S staining was used to evaluate mineral formation. RESULTS: There were 307 proteins identified, of which 93 proteins were common to both species. Gene Ontology functional analysis demonstrated similar pattern of biological process in both species which consisted mainly of tissue development and biomineralization. hDMMs and bDMMs both enhanced cell proliferation. After 24â¯hours, all concentrations of bDMMs promoted cell proliferation (pâ¯≤â¯0.05), while hDMMs did not affect proliferation. After 48 hours, groups with 1µg/mL of bDMMs and 0.01µg/mL of hDMMs had increased cell proliferation compared to control (pâ¯≤â¯0.0001). All concentrations of hDMMs and bDMMs enhanced cell migration and mineralization (pâ¯≤â¯0.0001). CONCLUSION: bDMMs has similar biological functions as hDMMs. Moreover, bDMMs stimulated cell proliferation, migration and differentiation similar to hDMMs.
Assuntos
Polpa Dentária/citologia , Dentina/química , Regeneração , Animais , Bovinos , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Camundongos , ProteômicaRESUMO
Biomaterial scaffolds have served as the foundation of tissue engineering and regenerative medicine. However, scaffold systems are often difficult to scale in size or shape in order to fit defect-specific dimensions, and thus provide only limited spatiotemporal control of therapeutic delivery and host tissue responses. Here, a lithography-based 3D printing strategy is used to fabricate a novel miniaturized modular microcage scaffold system, which can be assembled and scaled manually with ease. Scalability is based on an intuitive concept of stacking modules, like conventional toy interlocking plastic blocks, allowing for literally thousands of potential geometric configurations, and without the need for specialized equipment. Moreover, the modular hollow-microcage design allows each unit to be loaded with biologic cargo of different compositions, thus enabling controllable and easy patterning of therapeutics within the material in 3D. In summary, the concept of miniaturized microcage designs with such straight-forward assembly and scalability, as well as controllable loading properties, is a flexible platform that can be extended to a wide range of materials for improved biological performance.