Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(15): 6992-7000, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35404602

RESUMO

Modifying surfaces using free radical polymerization (FRP) offers a means to incorporate the diverse physicochemical properties of vinyl polymers onto new materials. Here, we harness the universal surface attachment of polydopamine (PDA) to "prime" a range of different surfaces for free radical polymer attachment, including glass, cotton, paper, sponge, and stainless steel. We show that the intrinsic free radical species present in PDA can serve as an anchor point for subsequent attachment of propagating vinyl polymer macroradicals through radical-radical coupling. Leveraging a straightforward, twofold soak-wash protocol, FRP over the PDA-functionalized surfaces results in covalent polymer attachment on both porous and nonporous substrates, imparting new properties to the functionalized materials, including enhanced hydrophobicity, fluorescence, or temperature responsiveness. Our strategy is then extended to covalently incorporate PDA nanoparticles into organo-/hydrogels via radical cross-linking, yielding tunable PDA-polymer composite networks. The propensity of PDA free radicals to quench FRP is studied using in situ 1H nuclear magnetic resonance and electron paramagnetic resonance spectroscopy, revealing a surface area-dependent macroradical scavenging mechanism that underpins PDA-polymer conjugation. By combining the arbitrary surface attachment of PDA with the broad physicochemical properties of vinyl polymers, our strategy provides a straightforward route for imparting unlimited new functionality to practically any surface.


Assuntos
Indóis , Polímeros , Radicais Livres , Indóis/química , Polimerização , Polímeros/química
2.
Macromol Rapid Commun ; 41(21): e2000236, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32776488

RESUMO

Stimuli-responsive drug release from a nanocarrier triggered by light enables the control of the amount of drug locally. Here, block copolymer micelles based on poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) as the hydrophilic block and a polymer with pendant donor-acceptor Stenhouse adducts (DASA) are used as a means to trigger the release of drugs under green light. The micelles are loaded with ellipticine to yield light-responsive nanoparticles with sizes of around 35 nm according to transmission electron microscopy (TEM) analysis. Two micelles with a drug loading content of 4.75 and 7.4 wt% are prepared, but the micelle with the higher drug loading content leads to substantial protein adsorption. The release of ellipticine from the micelle, which is monitored using the polarity-sensitive fluorescence of ellipticine, can be switched on by light and off by thermal recovery of DASA in the dark. The micelles are readily taken up by Michigan Cancer Foundation-7 breast cancer cells. Subsequent light irradiation leads to enhanced drug release inside the cell as seen by the enhanced fluorescence.


Assuntos
Micelas , Nanopartículas , Portadores de Fármacos , Liberação Controlada de Fármacos , Luz , Polietilenoglicóis , Polímeros
3.
ACS Macro Lett ; 11(2): 166-172, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35574764

RESUMO

Online, high-throughput molecular weight analysis of polymerizations is rare, with most studies relying on tedious sampling techniques and batchwise postanalysis. The ability to track both monomer conversion and molecular weight evolution in real time could underpin precision polymer development and facilitate study of rapid polymerization reactions. Here, we use a single time-resolved diffusion nuclear magnetic resonance (NMR) experiment to simultaneously study the kinetics and molecular weight evolution during a photopolymerization, with in situ irradiation inside the NMR instrument. As a model system, we used a photoinduced electron transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The data allow diffusion coefficients and intensities to be calculated every 14 s from which the polymer size and monomer conversion can be extracted. Key to this approach is (1) the use of shuffled gradient amplitudes in the diffusion NMR experiment to access reactions of any rate, (2) the addition of a relaxation agent to increase achievable time resolution and, (3) a sliding correction that accounts for viscosity changes during polymerization. Diffusion NMR offers a uniquely simple, translatable handle for online monitoring of polymerization reactions.


Assuntos
Polímeros , Cinética , Peso Molecular , Polimerização , Polímeros/química , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA