Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 151(11): 114903, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31542006

RESUMO

DNA confinement in a nanochannel typically is understood via mapping to the confinement of an equivalent neutral polymer by hard walls. This model has proven to be effective for confinement in relatively large channels where hairpin formation is frequent. An analysis of existing experimental data for Escherichia coli DNA extension in channels smaller than the persistence length, combined with an additional dataset for λ-DNA confined in a 34 nm wide channel, reveals a breakdown in this approach as the channel size approaches the Odijk regime of strong confinement. In particular, the predicted extension distribution obtained from the asymptotic solution to the weakly correlated telegraph model for a confined wormlike chain deviates significantly from the experimental distribution obtained for DNA confinement in the 34 nm channel, and the discrepancy cannot be resolved by treating the alignment fluctuations or the effective channel size as fitting parameters. We posit that the DNA-wall electrostatic interactions, which are sensible throughout a significant fraction of the channel cross section in the Odijk regime, are the source of the disagreement between theory and experiment. Dimensional analysis of the wormlike chain propagator in channel confinement reveals the importance of a dimensionless parameter, reflecting the magnitude of the DNA-wall electrostatic interactions relative to thermal energy, which has not been considered explicitly in the prevailing theories for DNA confinement in a nanochannel.


Assuntos
DNA Bacteriano/química , DNA Viral/química , Modelos Químicos , Nanoestruturas/química , Bacteriófago lambda/genética , DNA Bacteriano/genética , DNA Viral/genética , Escherichia coli/genética , Polímeros/química , Eletricidade Estática
2.
Phys Rev E ; 101(1-1): 012501, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32069627

RESUMO

The prevailing theories describing DNA confinement in a nanochannel are predicated on the assumption that wall-DNA electrostatic interactions are sufficiently short-ranged such that the problem can be mapped to an equivalent neutral polymer confined by hard walls with an appropriately reduced effective channel size. To determine when this hypothesis is valid, we leveraged a recently reported experimental data set for the fractional extension of DNA molecules in a 250-nm-wide poly(dimethyl siloxane) (PDMS) nanochannel with buffer ionic strengths between 0.075 and 48 mM. Evaluating these data in the context of the weakly correlated telegraph model of DNA confinement reveals that, at ionic strengths greater than 0.3 mM, the average fractional extension of the DNA molecules agree with theoretical predictions with a mean absolute error of 0.04. In contrast, experiments at ionic strengths below 0.3 mM produce average fractional extensions that are systematically smaller than the theoretical predictions with a larger mean absolute error of 0.15. The deviations between experiment and theory display a correlation coefficient of 0.82 with the decay length for the DNA-wall electrostatics, linking the deviations with a breakdown in approximating the DNA with an equivalent neutral polymer.


Assuntos
DNA/química , Nanoestruturas/química , Dimetilpolisiloxanos/química , Modelos Moleculares , Nylons/química , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA